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Abstract-The paper is concerned with convective diffusion to a spherical particle in a uniform Stokes flow 
at large P&let numbers in the case of a chemical reaction occurring on the particle surface with the rate being 
finite and arbitrarily dependent on concentration. Integral equations for the local diffusion flow and the 
surface concentration are obtained and a numerical method of their solution is developed based on the use of 
the appropriate asymptotics in the neighbourhood of the forward stagnation point. The effect of the reaction 
rate constant and the reaction kinetics on the total diffusion flux to the particle surface is studied. A simple 
approximate formula is suggested allowing determination of the mean Sherwood number with adequate 
accuracy. 

A chain of reacting particles is considered and a corresponding integral equation is obtained for the local 
diffusion flux on their surface. A qualitative analysis of mass transfer for the chain of spheres is performed and 
it is shown that interaction of the diffusion wakes and boundary layers of particles in this kind of the ordered 
systems results in a substantial decrease in the mass transfer rate. Approximate expressions are obtained for 
integral fluxes to the chain particles. 

The proposed method is extended to an arbitrary three-dimensional flow around particles (or drops) of 
arbitrary shape. 
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NOMENCLATURE 

constant defined by (17); 
constants in Acrivos and Chambre’s 

equilibrium equation; 

sphere radius ; 
factors in the series-expansion of function 

q(t); 
beta-function ; 
forward stagnation point region; 
factors in the series-expansion of function 

@(t) ; 
reagent concentration close to the surface; 
surface concentration under conditions of 

complete absorption ; 
reagent concentration in flow ; 
substance concentration far from a sphere; 
concentration distribution in a diffusion 

boundary layer under conditions of com- 
plete absorption; 
diffusivity ; 
diffusion boundary layer region ; 
outer region; 
function determined by the mechanism of 
surface reaction; 

operator defined by equation (35); 
operator defined by equation (52); 

= h%41Sxxl~ = 0 ; 
9 XX’ components of metric tensor ; 
dimensionless total flux ; 
dimensional total flux; 
dimensionless total flux under conditions 
of complete absorption; modified Bessel 
function; 

total diffusion flux to the first m particles of 
the chain ; 
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Z, 

instantaneous number of the point of di- 
vision of the interval [0, to] ; 
local diffusion flux ; 
local limiting diffusion flux ; 
= 3-1’3r-1(2/3)ck; 
dimensionless constant of the surface re- 

action rate; 
dimensional constant of the surface re- 

action rate; 
plate length; 
distance between particles; 

number of the sphere in a chain; 

number of divisions of interval [0, to] ; 
number of the point of division of the 

interval [0, to] ; 
= aUD-‘, P&let number; 

number of the point (line) of incidence; 

root of equation (11); 
radial coordinate; 
=& -1 . 8, 
particle surface area; 
mean Sherwood number ; 
mean Sherwood number under conditions 

“=’ $FQa$;:;;j; 

ZZ 

fluid velocity far from the particle; 
= c(d) _ c(d). 

diffusion cike region ; 
diffusion wake subregions ; 
=& -‘(?l- e); 
coordinate running along the plate; 
=& -‘!r - 1); 
= $53/Z ; 
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Greek symbols 

= 2’ 3r- I(:‘); 
= pe -1’3. 

= $$- ;_,-I ‘: 

zz v:i sin (1: 

angular coordinate : 
order of reaction ; 
coordinate of the point (line) of incidence; 

kinematic viscosity of liquid; 
= 1: V’ :: 
coordinate system for a three-dimensional 

flow in Section 2; 
RHS of Acrivos and Chambre’s difference 

equation : 
= ;;:r: 
= (!?I - I)t, + 7,; 

i 
= n,:i; 

= t&J; 

= 7,(O); 

kernel of integral equation; 
stream function analog for a three- 

dimensional flow: 

stream function; 
= ,; 7’ “I-( 1,‘3)1\1:. 

Superscripts 

(h), forward stagnation point region : 
@I. diffusion boundary iayer ; 

1:;; 
outer region : 
subregions of the region W, i - 1. 2, 3, 4. 

Subscript 

171, number of the sphere in the chain 

1. INTRODIJCTION 

ONE OF the main objectives of the physico-chemical 
hydrodynamics is to determine the total flux of the 

substance dissolved in a liquid to a reacting particle. In 
this respect the problems involving the finite rate of the 

surface reaction which present themselves, for exam- 
ple, in the case of the integral-order reactions and in 
the case of the Langmuir surface fractional-order 
reaction kinetics [t] are of considerabie interest. 

The problem of diffusion to a flat plate in a viscous 

incompressible fluid flow at large Reynolds numbers 
was earlier considered in the diffusion boundary layer 
approximation for the first order reaction in [2] and 
for the arbitrary surface reaction kinetics in [3.4]. 

The problem of convective diffusion to a spherical 
particle moving in a gas at small P&let numbers for the 
linear and arbitrary kinetics was considered respec- 
tively in [S, 61 by the method of matched asymptotic 

expansions. 
In the present paper, by using the method of the 

matched asymptotic expansions, the distribution of 
concentration near a sphere in translational Stokes 
flow has been obtained for large P&let numbers in the 
case of a chemical reaction occurring on the sphere 
surface with the rate which depends arbitrarily on the 
reagent concentration close to the surface. An impor- 

tant feature of this problem. whicft 1s absent in tltc 13~ 

platecase [2 --41, is that concentration in the vicrnrfy I?! 
the forward stagnation point of the sphere d8crs from 
a non-depleted concentration in the main &)a-. fit 
cause of this, fairly general results. which were t)ly 
tained by Acrivos and Chambre [4/ and whirls i\tr;‘ 

based on the additional inference that concentr‘atn~n~ 

at infinity and at the pomt of inc~tiencc arc cyuai. z% 
well as their method of numerical integration al!’ IIX 

corresponding integral equation for thr: surface ixbi:- 

centration cannot be directly applied in the prcse~z! 

case. 

2. STATEMENT Ok THE PROBLkYVl. 
CONCENTRATION DISTRIBI~TIOY 13 z 

DIFFVSIOK ROt’NDARY I,AYk:R 

~oi~sider~~~ion is given to the ireaciy state convective 

diffusion of substance to a solid sphere of radius td m ii 

uniform Stokes flow of an incompressible fluid having 
the velocity U and concentration <‘,\ far from the 

sphere. It IS presumed that there IS a chemical reaction 
on the sphere surface occurring with the linitc rate 
k’c,,,f(C”(‘,, I, where li’ is the reuct~ot~ r:ttc constant. i’ i\ 

the reagent concentration at the ~~%tce i he functittn 
f is determined by the particular rcttctlim mechanism 
on the sphere surface. Thus. for the ,C-CV~U re.iction 
J’(C) _z- (‘” 

In spherical coordinates. r and ii. fixed with r-espect 

to the particle, the dimensionless equation of the 
steady state convective diffusion and the boundary 
conditions are of the form 

r = I, (:i, f+ - I\:f(c) = 0; I’ --t I , ( -* 1 . fi =- 0. (‘<. ?t) = 

f); (1 ZL z, ic:p(j = () : i: 3 ZZ P@ LI (ic: n ‘, i, 1. )<‘<Jjf ’ 

,f‘(O} = 0. Here c is the substance concentration. pi/ IS the 

stream function, Pe the P&let number, D the diffusion 
coefficient: the angle 0 is measured from the fiiow 

direction. The scales in equation (1 I are taken to be the 
sphere radius. the rate and the c~~l~centr~t~[)~l at 
infinity. 

The dimensionless Stokes stream function for a 
sphere IS of the form 

We shall hereafter assume that, as usual. the Peclet 
number for Ruids is large, i.e. i: CC 1. An asymptotic 
analysis of the problem (1) (2) at I. -3 0 for the case of 
complete absorption on the sphere surface C-(u ::. 1) 
= 0 (k = r ) was carried out by Sin and Newman [7-j 
and for the case of the linear kinetics.,f‘tC’) = C. by 
Poiyanin and Sergeev [S]. 

At i: CC 1, the flow in the vicinity ofthe particle can be 
divided into several characteristic regions with dif- 
ferent mechanisms of mass transfer 171. These are: the 
outer region L’, the region of the forward stagnatmn 
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point b, the diffusion boundary layer d and the region 
of the diffusion wake q the latter, in turn, being 
composed of the subregions IV(‘) (i = 1,2,3,4). In each 
of these regions, equation (1) is replaced by an 
approximate one by isolating the principal terms of the 
expansion in the small parameter E. Agreement be- 
tween the solutions for separate regions is ascertained 
by asymptotic matching at their arbitrary boundaries. 

In the outer region e = {r - 1 > O(E), O(E) < 0) (here 
and subsequently, inequalities within braces indicate 
the order of characteristic dimensions for the region 
considered) the RHS of equation (1) is negligibly small 
and diffusion plays a minor part in substance transfer. 
Here, concentration retains its constant value equal to 
that at infinity, i.e. c@) = 1. 

In the region of the forward stagnation point b = 
{r- 1 <O(c), n-B<O(E)} equation (1) can be slightly 
simplified, but it will retain the terms which describe 
diffusion both in the tangential and in the radial 
directions. It will be shown later (see Section 5) that 
this region does not affect the distribution of con- 
centration in the diffusion boundary layer and in the 
diffusion wake of the particle. 

Convective diffusion in the diffusion boundary layer, 
d = {r - 1 < O(s), O(F) < Q}, which is composed of the 
convection along the sphere surface and the lateral 
diffusion, predominates in the process of the dissolved 
component transfer to the particle surface. 

Employing substitutions 5 = E-~$~/~, t = T(B) = 

&[7t - 0 + isin 201 and retaining the principal 
terms of expansion in E, we obtain from equations (l), 
(2) the following equation and boundary conditions 
for the concentration distribution in the diffusion 
boundary layer 

(;-:‘$) dd) = 0 (0 < t I to), 

5 = 0, q(t)ac’d’/a( - &kf(C’d’) = 0; 

5+x’, &d) + 1 ; t = 0, 4 # 0, P) = 1; (3) 

q(t) = $sin To(t) 
2 ’ 

t 3 T[TO(t)], 

4 t, = t(O)=-. 
8 

Here, the last boundary condition at t = 0 is the 
condition of incidence [2]. 

Solution of the diffusion boundary layer equation 
(3) under the condition of complete substance absorp 
tion on the sphere surface (k = so) was obtained in [2] 
as: 

cP’(C, t) = r- W3)Y(1/3, C3/9t), 

s 
X (&x) = e-T~-2’3d~, r(f) = y(), + co). (4) 
0 

Following [S], we perform the substitution z = 
2/3t312 and seek the solution of the problem (3) in 
the form ccd) = c’,“’ + u ; in so doing, we obtain for the 

unknown function u the following equation and the 
boundary conditions 

au a34 I au 
at - az2 

--+c$’ (5) 

z = 0, _zli3; + ($)1,3k” 
@) f(u) - & = 0, 

3 

(6) 

Z--*CC, u-to; t=o, u=o. (7) 

The solution of equation (5) is sought in the form 

u(z,t) = $J @(L)(t - 1)-2’3 exp( - i’)dn, (8) 
3 0 

i = )z(t - 1)-‘12 (0 < t I to). 

The function (8) satisfies equation (5) and boundary 
conditions (7) for any kernel m(t), and over the interval 
0 < t I to it has the following properties [9] : 

lim u = L,q = $-s’ @(n)(t - 1)-2’3dL, (9) 
2-O 3 0 

lim [~~'~atd/az] = -Q(t). 
I-0 

It follows from (6) and (9) that the function m(t) is 
the solution of the integral equation 

Y/(t)@(t) + 2”3r(5)K*f(L*@) -ag(t)t-“3 = 0, 

(10) 

The function v(t) in the vicinity of the point t = 0 has 
the series expansion 

q(t) = 2 aJ@n+ 11’3 ; ao = 32’32- 113 , a,=&... 

n=O 

and the property t + to, q(t) -+ a,(t - t0)1/3. 

If the function f(x) is continuous, then 
co(t) + aqt - l/3 + 0(t-‘j3) at t + 0, where q is the root 
of the equation 

H(q,w)=q++wf(q)-1=0, 

(0 = f .21'3l-(f)kE). 

(11) 

Here and subsequently, unless otherwise specified, the 
validity of the following inequalities is assumed: 
f(1) > O;f: > 0 at x > 0. By virtue of the fact that 
H(0, w) < 0, H(l,w) 2 0, Hi > 0 (0 I w I co), the 
above properties mean that equation (11) has a single 
non-negative root q, 0 2 q I 1. The above inequalities 
hold, for example, when the reactions are of the order 
K > 0. 

If the function f=f(x) can be expanded into a 
Taylor series converging in a neighbourhood of the 
point x=q, then, similarly to the linear kinetics case 
[8], the solution of equation (10) can be represented in 
the form of a locally converging series 

a(t) = c bntc2n-1)‘3, b. = aq. 
n=o 

(12) 

In particular, the coefficient b, can be written in the 
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following form [B(p,q) is the beta function] 

The coemcients ho and hl will further he used to 

evaluate the total diffusion flow to the particles. 

With the aid of the function Q,, the concentration 
distribution in the diffusion boundary layer may be 
given as 

dd’(<,f) = r-*(1 '3);'(1,3,~"'9tJ 

@(i)(r - L). “cxpl- 9,‘;)~~di. (14) 

3. CONCESTRATION DlSTRIBtITION I& 

A Diffusion WAKE 

Consider the diffusion wake region W adjacent to 

the diffusion boundary layer region d and the sphere 
surface in the neighbourhood of the point 8 == 0, I’ = I 
It was shown in [7] that the region Wconsists of four 

distinctive zones: the convective boundary layer re- 

gion W I” the inner wake region W”‘, the rear , 
stagnation point region IV’“) and the mixing region 
w’4’. 

The diffusion wake region, the boundary of which 

corresponds to H-J:, contributes but slightly to the 

integral diffusion flow to the particle surface. However. 
the concentration fieid in W will play an important 

part in mass transfer of the particles that move in the 

diffusion wake of the first particle [ 10,l l] (see Sections 
9, 10). 

Estimation of separate terms of equations (1 I. (3) in 
the convective boundary layer region of the wake 

W”’ = IO(K) < r - 1. O(G) < I// < O(GJi 

shows that the RHS of these equations may be 

neglected. Therefore, theconcetltratio~l depends on the 
stream function alone and retains the constant value 
along the stream lines which is equal to thevalue at the 
exit from the diffusion boundary layer. The con- 

centration expression in W”’ is determined by match- 
ing with solution (14) and has the form 

c”‘(<) = c’d’(&t(t))) j,+*, z__cnn,, = C,‘d’(&lO). (151 

In order to investigate the inner wake region 

W’2’= {O(t;) < r - 1 < O(r: -I). $ < O(iJ)I 

and the mixing region 

W’4’ = ;o(i:- ‘) < r. l// < 0(X2) /. 

in which the radial tram fer is of no consequence, let US 
write the convective diffusion equation in terms of the 

variables r, rl, taking into account the fact that for these 
regions the first term in brackets on the RHS of 
equation (1) may be neglected 

Here all of the coefficients should be expressed in terms 

of I’ and I$ with the use of expression (2) for +. 
The region of the rear stagnation point 

W’“’ = :(I < O(X), r -- 1 < o(::);. 

in which the transfer in both the radial and the 

tangential directions is substantial, and the inner wake 
region IV”’ will be considered simultaneously. 

The equation and the boundary conditions for !.V” 
in terms of the variables y= r- 1, ,C = r ‘$ have the 
form 

Here the equation has been obtained from equation 

(16). while the boundary condition at infinity (< -+ x j 
expresses the condition of matching with the solution 

in the convective boundary layer region N’“’ equation 

(15). 

In the derivation of the above boundary condition, 
the asymptotics 

was taken into account which follows from eyuation 

(10) and from the second property of the function Q, 
equa~~t~~i (9). 

The equation and the boundary conditions for WI”’ 
in terms of the variables Y = :. ‘ir -.. 1). S = I: ’ 0 will 

be of the form 

The last boundary condition is the condition of 
matching with the solution (14) for the boundary layer. 
The formulation of the problem (18), as well as of the 
problem (171, must be supplemented with the con- 
dition of the c~~t~forrnity of solutions in the regions tl/“’ 
and Wi3’: 

(,(3’( 1’4 I( ) = <‘2’(!. --f 0). 11% 

Let us now show the manner in which two 
boundary-value problems (17) (19) can be split up 
and each reduced to a successive solution. Let us 
assume that we have obtained the solution for +Vc2’. 
Then, it follows from the last boundary condition (17) 
at < --+ / (< is further replaced by the variable s 
= r ~- 3 ’ 0) that in this region the solution can be given 

/-- 
in the form c.(~’ = \/ i: ~(4’. s), ,: -= I^ --- 1. 

By assuming that the solution for the full problem 
has been found, we shall write it in terms of the 
variables J’ and s, i.e. c’(J’, 0, t I _T I.(!. s, >:I. At i: .-+O (s 
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=const.), the solution of the full equation (by de- 
finition) goes over into c@), i.e. the following holds 

& + 0, U(Y, .% e) -+ & w(y, s) + O(&). (20) 

We assume here that the boundary condition for 
concentration on the particle boundary is of the form 

in which, just as in W (2J diffusion along the stream , 
lines may be neglected. The concentration cc4) satisfies 
the following equation and boundary conditions 

y = 0, F(c) = c F,*(c) = 0, 
k=I 

(21) 
[ac’4’/af]s=o = 0, C(‘yi_?_ + 1, 

c’4’(p + 0) = [c’“‘(5) + P’(5, y) - Ai”],, ?‘. 

F,*(Ac) = PF,$); 0 < y1 < yz < *. ‘, 

where F,* are the operators homogeneous in c which 
are independent of the angle 6 and the parameter F. 

Multiplying the boundary condition (21) by E-‘~/‘, 
employing the representation (20) and taking the limit 
as c-+0, s= cons& yield the following boundary con- 
dition for concentration in the inner wake region 

Here the initial condition is determined by match- 
ing the solution in the mixing region WC4’ with the 
solutions in the regions W(l) and WC*). 

The solution of the problem (25) is of the form 

y = 0, F&G’) = 0. (22) x I, $ @(t*)dt*. (26) 
( ! 

Having obtained the concentration distribution in 
the inner ‘diffusion wake region WC’), and having 
written it in terins of _the variables x S, we, letting E 
approach zero in c(‘)( x S, s),,will obtain from (19) the 
boundary condition for the rear t stagnation point 
region Wc3’ at Y--+ K. 

Here, I, is the modified Bessel function and c”‘(k) is 
determined from equation (15). 

In the case of the K-order surface reaction, at K < 1, y1 
=K, yZ=l; F, =kcK, F, = &z/~?y; at ~>l, yl=l, y2 
=K, F, =&,Qy, F,=kc~, while at K= 1, y$=l, F, 
= &j?iy -kc. 

When the boundary condition includes the para- 
meter E or other quantities connected with it by any 
relations, the procedure of obtaining the boundary 
condition for W@) remains the same and consists in 
isolation of the higher-order term of expansion in E 
from (21) on having substituted (20) into (21). 

The case, which is most important for the diffusion 
boundary layer, is characterized by ke - 1. Then, for 0 
<K < 3 the above procedure yields 

The expressions for concentration distribution in 
the diffusion wake regions Wt2) and W@) show that 
the distribution of concentration in them differs from 
that in the case ofcomplete absorption (k= x) by the 
proportionality factor A alone (17) which includes an 
additional term with @(to) <O being responsible for the 
increase of concentration in these regions as compared 
with the limiting case k= x. It is seen from equation 
(24) that on the flow axis 5 =O at r - 1 <O(E” ‘) the 

concentration is of order fi and increases in pro- 
portion to the square root of the distance up to the 
body surface. 

4. CONCENTRATION DISTRIBUTION IN THE 
WCINITY OF THE FORWARD STAGNATION 
POINT. UNIFORM APPLICABILITY OF THE 
DIFFUSION BOUNDARY LAYER SOLUTION 

y = 0, c(2) = 0. (23) 

The solution of the problem (17), (23) is of the form 

PI : 
cc’) = (?1~)~!~2-~‘~Ay”~df(-1~2, 1, -&‘2y), (24) 

where @(a, b, c) is the degenerate hypergeometric 
function. 

Equations (24) and (19) give the boundary condition 
for con~ntration in a neighbourhood of the rear 
stagnation point: 

Y+ 33, c(3) -+ E7t1’22-1’2AY1’2@(- l/2, 1, -3/2YS2). 

The problem (18) with the latter boundary con- 
dition was studied by numerical methods at k = sx 

PI. 
The contribution of this region into the integral flow 

to the sphere is insignificant, therefore, it will not be 
analyzed here. 

It follows from the results of Section 3 (at k=co 

[7]) that the diffusion boundary layer approximation 
is not uniformly app!icable as to the parameter EC< 1 
over the entire flow region. In particular, a special 
analysis is required for the rear stagnation point 
region since here both the normal and tangential 
substance transfer along the particle surface is sub- 
stantial. This leads to the following additional ques- 
tions: (1) whether the diffusion boundary layer 
approximation is valid in the region of the forward 
stagnation point (in view of the fact that the Jacobian 
of the transformation from the coordinates r, 0 into 
the Mises variables $,0 vanishes at the forward 
stagnation point) and (2) whether any error results 
from the additional boundary condition ctd)(t = 0) 

= 1 (condition of incidence [2]) [equation (1)] in the 
actual concentration distribution over the flow. 

In order to perform the analysis, let us introduce 
into 

Consider now the mixing region b = (r - 1 < O(E), 7~ - B < O(E)} 

W’4’ = {0(&-l) < I, $ < O(E)}, the prolate coordinates 
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Y= i:--‘(r - l), x = r:-‘(n - 0). (27) 

Expressing equation (l), with regard for (2), in 
terms of the variables X, Y and retaining the higher- 

order terms ofexpansion in i:, X, Y= O(l), we obtain 

the equation and boundary conditions for the region 

of the forward stagnation point 

y= 0, iC’“‘i(~Y- &f‘(p) = 0; y..+ -,_. (.(*I + 1 

,y = () c:+ic:x =: 0. 

In order to complete the formulation of the prob- 

lem (28), it is necessary to add the condition of 
matching with the boundary layer solution (14) 

c’*)(X + -L ) = @(Cl ---f n), Y= const. (29) 

For the explicit form of the concentration ex- 
pression in the diffusion boundary layer at an arbit- 

rary boundary with the region b to be obtained, we 

shall employ the asymptotics for the kernel @,jt) -+ 

W -“3 + 0(t-““) at r + 0, where q is the root of 
equation (11). In view of the above, we can obtain 

from (14) 

(,(d)(t) -+ 7I) + J(<, t) + O(t2:3), (30) 

The expression for J can be put into a more 

simplified form. The properties (9) of the functions in 

the form of (8) show that J(<, t) is the solution of the 

boundary-value problem 

The first two boundary conditions are due to the 
representation (X), while the last one has been ob- 

tained by direct computation of the integral (30) at < 
=O. A direct check shows that the function 

J(S,t) = y 4 r-.*(1:3)(1 -- q)y(1,/3,53i9t) 

is the solution of the problem (31). 
Using the substitution (27) and taking the limit as 

i: -+ 0, we obtain the matching condition in the form 

s + r, P-y + r~ 1(1’3)(1 - y)s’(i!3, Y 3 2). 

(32) 

It can be easily verified that the solution of the 
problem (2X), (32) does not depend on the coordinate 
X and coincides exactly with the asymptotics (32). 

The equality y = 0 corresponds to the case of limltrng 
absorption. 

It is seen from equation (32) that i:oncel!tratiiln fii 

the region h depends only on the ckrordinatc 1 snif 
increases rapidly from its value at Ihe particle hurtalrr 

c(O)=<{ up to the concentration in the outer rcgior~ 
Concentration in the region h is determined only h! 

the boundary condition at X --+ J Thi, means th:it 

the solution for the diffusion boundary 1,1jer j i li !4 
uniformly applicable over the cntlrc region t)‘; (iic 1 

The concentration and the local diffusion 1:u\ JI 

the forward stagnation point 0.: n. r 1 fn: r~-t)~ 3’2 
determined by 

C‘(O) = (1, i(O) = i\P, ‘I 1 qt. 133, 

where (1 is the root of equation (I 1 I 
It follows from equations (1 1 I and (33) that ihe 

diffus~~)n flux in the vicinity of the forward stagnaita.11: 
point increases w-ith I, and decreases with incrc:tsc I!! 

the reaction order K-. 
In the particular case of the first-order reactton. J, 

= I, we have 

Hence, .j = kc”” # kc II ~ I = k and in the general case 

the kinetic regime in the vicmity of the f’or\tur-d 

stagnation point are absent. Note. that in the case 01 

convective diffusion to a flat piatc [2 31 the neiph- 

bourhood of the forward stagnation point is afways 

the region for the kinetic reaction regime. For a solid 
sphere, the kinetic condition in the region of the 

forward stagnation point exist only at I, K Pr’ ‘. 

Using the integral equation for @ft! 101, we shall novv 

obtain similar equations for the toc:J diffusion flux j 
= &S”‘/&. [ 1r , and the surface conccntratian I \r -:- I, 
0) SE Clr). 

Equation (14) and the propertles (9) give the rc- 

lationship between the kernel anti the local tlu~ : 

Substituting this expression into equation (10) and 

taking the equality ,j=kJ’(C‘) into account yletd the 
following integral equations for the local diffusion flux 
and the surface ~on~entrati~~l~ 

At K*-+ y. (which corresponds to !‘e-corrst.. 

k+ T ), equations (34) and (35). \sith the equality,) (01 

=0 taken into account, yield 
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This solution corresponds to the case of complete 
absorption which is specified by the concentration 
distribution (4). 

At K* + 0 (which corresponds to Pe -+ c/j, k = 
const.), the integral equations (34) and (35) show 
that in the principal approximation over the para- 
meter K* the local diffusion flux and the surface 
concentration are constant over the entire sphere 
surface 

j(t) = kj-(c)l,_, = kf(l), C = cl,,, = 1. (37) 

From this it follows that at k<tPe113 the conditions 
for the reaction to occur throughout the entire sphere 
surface (except for a small region in the neigh- 
bourhood of the point of outflow 0 =0) are close to the 
kinetic conditions. The explanation of this result lies in 
the fact that with increase in the P&let number the 
diffusion flux can increase only until the surface 
reaction becomes a limiting stage in the diffusion 
process. 

6. NUMERICAL SOLUTION OF THE INTEGRAL 
EQUATION FOR THE LOCAL DIFFUSION FLUX 

In order to obtain a numerical solution of the 
integral equation (34), let it be written down with 
account for (36) as 

1 

U1/3)r(2/3) 

X f j(n),_,:, 
0 joG) 

Partition the interval [O,t,] into N equal parts 
[(i - l)At, iAt], At = to/N, i = 1,. . ., N. The above equa- 
tion will be approximated by the following system of 
algebraic equations for the function j(i) (from now on 
the number of i is indicated as the argument of the 
function j(iAt)) : 

j(n) = kf 1 - 

nm1 1 j(i) 
xn-“3 + c - :+ 

i=l N 
2 O(i) $f$j)il/3(n1 ij2’3)]j’ 

In writing down a numerical scheme to evaluate the 
integral, it was taken into account on the RHS of this 
equation that the functions j(t) and j’(t) have no 
singularities over the interval [0, to]. The value ofj(0) is 
determined by equation (33). The function j’(t) is 
determined according to equation (36). 

Hence, the problem of determining the value of j(n) 
reduces to the solution of the transcendental equation. 

It should be noted that the above numerical method 
for the solution of the integral equation (34) is more 
simple than that used by Acrivos and Chambre [4] 
since it does not involve the computation of 
derivatives. 

The results of numerical solution of equation (34) 
are presented in Fig. 1, where dashed, solid and 

dashed-dotted lines show the local flux distribution 
over the particle surface for the l/2-, l- and 2-order 
reactions, respectively. Curves 1,2 and 3 correspond to 
K*=o.l, 1, cc. 

Figure 2 illustrates the effect of the reaction rate 
constant for the same reaction orders on the dimen- 
sionless total flux I to the particle. Here 

I* 
I=-= 27c “ac 

aDc, s I oar r=l 
sin 6’dl3, 

I, = (3~)~‘~ [28r(i/3)] - 1, 

where I* is the dimensional total flux, I, is the 
dimensionless total flux provided there is complete 
substance absorption on the sphere surface. 

7. CERTAIN FEATURES IN DETERMINATION 
OF SURFACE CONCENTRATION 

Consider now in more detail the equation for the 
surface concentration (35). If the concentration on the 
LHS of equation is supposed to be prescribed, then 
equation (35) may be looked upon as the Abel 
equation for the unknown function f(C). Solving 
equation (35) for f (C) and introducing the derivative 
under the integral sign, we shall transform equation 
(35) to 

kf(C) = j'(t) [l - C(O)] - ? 
s 

’ dC 
oX(t - 1)-1’3d,? 

(38) 

where j” is the local diffusion flux provided there is 
complete absorption of the dissolved substance on the 
particle surface (k = ‘CC-) (36). 

01 
02 04 06 

FIG. 1. Local diffusion flux to the particle surface. ---, surface 
reaction of the l/2 order; -, first-order reaction; .- ‘-, 
second order reaction. Curves 1,2,3 correspond to K* = 0, 1, 

1, and %. 
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K’ 

FIG. 2. Dependence of the total diffusion flux on K*. -- -, reaction of the 13 order: ----- , tirst-order reamon. 

. second-order reaction. 

Equation (38) will coincide with the equation ob- 

tained by Acrivos and Chambre, but derived by 

another method [see equation (6) of ref. 41, if we omit 

the terms in square brackets which are due to the 

difference between the concentration at the point of 

incidence and the non-depleted concentration in the 
flow far from the particle, C(t =O)#c(r= 2: )= 1. The 

proviso was made in [4] that in the limiting case of 
complete absorption, c(r = 1) = 0 (I, = x ). the integral 
on the RHS of the derived equation should be looked 
upon as the Stiltjes integral. However, in the present 

case, as it follows from (38), the integral in Acrivos and 

Chambre’s equation at any k should always be re- 

garded as the Stiltjes integral. 
Moreover, in their method of numerical integration 

of the respective integral equation (equation (I 1) of 

[4]) Acrivos and Chambre assume that the surface 

concentration at the point of incidence is known and 
equal to the non-depleted concentration c(t =O) = 1. I? 
can easily be shown with the aid of equation (38) that 
in the general case the RHS of the difference equation 

(11) of [4] should have the form 

rI = $-1,3[1 - C(O)] 

,I 7 

+ C(0)(n2~3 - (II - IV) + r: C(li)A,,_,, (39) 
km? 

where A, are some constants independent of con- 
centration, n = 1, 2, 

Equation (39) differs substantially from equation 
(11) of [4] and coincides with the latter only in special 
cases when the equality C(O)= 1 is valid. As shown 
earlier, for a Stokes flow around a sphere. the con- 
centration at the forward stagnation point (33) is 
governed by equation (11) (it can also be obtained 
directly from equation (38)) and can differ greatly from 
the non-depleted concentration, In particular, at 
kPe_“” >> 1, the inequality C(0) = y K 1 holds. 

It should be noted that in a general case, depending 
on the kinetics ofthe reactionf=f(x), equation (1) may 
simultaneously have several roots corresponding to 
different reaction conditions on the particle. This 

phenomenon is a typical one for the problems of the 
combustion theory [l]. 

It will be shown later (see Section 11) that in the case 
of a flat plate in a viscous incompressible liquid flow at 

large Reynolds numbers, which was considered by 

Acrivos and Chambre in [4], the limiting equality C(0) 
= 1 does hold for any i( and arbitrary form of the 
function5 The only mode of reaction for anyj‘(k# r,) 

and its nil effect on the concentration at the point of 
incidence in this singular case are due to the following 

two reasons : (1) inappli~abii~ty of the expression used 

in this work for the stream function and obtained in the 
approximation of the hydrodynamic boundary layer 

in the vicinity of the point of incidence: and (2) 
inadequacy of the diffusion bound~~ry layer approxi- 

mation in the vicinity of the forward stagnation point 

of the plate. Both reasons are similar in character and 

stem from the fact that the Reynolds numbers Re, 
L_yf_iti-- 1 and the P&let numbers Pr,= xUD_’ (X is 

the coordinate running along the plate) are small in 
the vicinity ofthe forward stagnation point ofthe plate. 

Note, that in the case of the Stokes flow around a 

sphere the diffusion boundary layer approximation is a 
correct one and uniformly applicable in the vicinity of 

the forward stagnation point (see Section 4). 

8. APPROXIMATE EXPRESSION FOR THE 
MEAN SHERWOOD UI‘MBER 

The results of numerical integration ofequation (34) 
show that the mean Sherwood number can be approx- 
imately determined from the algebraic (transcenden- 

taff equation 

Sh = kf (401 

where Sh, = l,S- ’ is the mean Sherwood number per 
particle provided there is complete absorption of the 
substance on its surface C(T= l,B)=O (k= x), S is the 
particle surface area. The solution ofequation (40) can 
be written in the form Sh=(l -q)Sh,, where 4 is the 
root of the equation H(q,kSh,‘)=O (II). 

A check of the validity of the above formula has 
shown that in the case of a Stokes Bow around a sphere 
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the maximum deviation of the root of equation (40) 
from the results obtained by numerical integration of 
equation (34) is observed at I(* N 0.1 (rc = l/2, 1, 2) 
and does not exceed 15 %. 

Let us now show that it is also advisable to use 
equation (40) to determine the mean Sherwood num- 
ber at small and moderate P&let and Reynolds 
numbers. 

1. At small P6clet and Reynolds numbers in the case 
of a uniform flow around a sphere for any velocity 
constant k and arbitrary form of the function f; 
equation (40) yields a correct (exact) result at least for 
the first three terms of the asymptotic-series expansion 
of the Sherwood number in a small P&let number! 
This is proved by direct substitution of the expression 
for the mean Sherwood number She, obtained for the 
case of complete absorption (k= c’c) [12], into equa- 
tion (40) with subsequent series expansion in a small 
Peclet number, and finally, by comparison with the 
data of [6]. 

2. For particles of any shape at an arbitrary f 
equation (40) yields a correct asymptotic result in the 
case of small and large reaction rate constants, k+O 
and k-, cc, for arbitrary P&let and Reynolds numbers. 

3. The validity of equation (40) at the finite P&let 
and Reynolds numbers was tested with the aid of the 
results of [13] obtained by numerical methods for the 
problem of mass transfer of a spherical particle 
involving heterogenous chemical reaction of the first 
order,f(x)=x. It follows from the Table in [13] (p. 
130) that in this case too equation (40) provides very 
good results (to within 5 %). 

The considerations given above show that equation 
(40) (recall the assumption thatf( 1) > O;fi > 0 at x > 0 
- the reason for equation (40) to have a single root) 
may be used to approximately determine the mean 
Sherwood number for any k andfover the whole range 
of the Pellet numbers (01 Pe< a) for laminar flow 
around particles of an arbitrary shape. In this case, for 
equation (40) to be used, it is required to know only 
one single constant, She, which is determined from the 
solution of a substantially simpler auxiliary problem 
subject to the condition of complete absorption of the 
dissolved substance on the particle surface (note that 
ShO can also be determined ex~rimentally). 

9. MASS TRANSFER OF A CHAIN OF SPHERES. 
EQUATION FOR THE LOCAL DIFFUSION FLUX 

Consider now convective diffusion to a chain of 
spheres of equal radius. The spheres are assumed to be 
arranged one after the other on the axis of a uniform 
Stokes flow and the dimensionless distance between 
the spheres satisfies the condition 1~s 1 cc Pe1/3 (here, as 
before, the sphere radius is taken for the characteristic 
length scale). 

The condition 1~ Pe’i3 means that mass transfer of 
each subsequent sphere m is controlled by con- 
centration distribution in the convective boundary 
layer region of the diffusion wake Wci, of the 
preceding sphere [ 10, 111, Owing to the condition that 

l<<l the flow field in the vicinity of each sphere is 

dete~ined by equation (2) to within O(f- ‘). The case 
of rather a loose chain of particles at I z O(Pe”“) which 
corresponds to the interaction of the boundary layers 
d,,, with the mixing regions of the diffusion wake WE!, I 

is not considered here and can be analyzed in the 
manner similar to [IO]. 

The concentration in the convective boundary layer 
region of the diffusion wake Wg) of the mth sphere 
retains constant values along the stream lines. These 
are equal to concentration at the exit from the diffusion 
boundary layer d,. Hence, once the solution c!,$ = 
c$?(& 5,) in the diffusion boundary layer of the mth 
particle is known (here r and o, = t(@,) are determined 
in equation (3), 6$,, is reckoned from the point of 
outflow), then the distribution of concentration in the 
convective boundary layer region W$’ is determined 
by the expression cc)(<) = c!$(& ri), 2: = r,(O). 

The concentration distribution in the diffusion 
boundary layer of the mth particle is determined from 
the solution of (3) where the “initial” condition at t =O, 
c= 1 is replaced by the condition determined from the 
concentration distribution in the convective boundary 
layer region W$!. 1 of the (m - 1)th sphere. 

By analogy with the results of [lo, 1 l] it is possible 
to obtain the recurrent system of the boundary-value 
problems which determines the concentration distri- 
bution in the diffusion boundary layer of the mth 
sphere (m = 1, 2, . . .) in the form 

5 = 0, ~~(~~)ac~)~a~ - ke~~c~~), = 0; 

~+a,c’,d’+l;t,=O, 

c$ = c$L,(S, 7;_1); cb”‘= 1. 

Here the function q, = pl,(z,) is prescribed 
parametrically 

fi. fi tlrn = 2 sin 0,, 7, = 8 (n - em + l/2 sin 20,). 

(42) 

Substitution of 

3 7 = (m - 1)7, + 7,, z. = 7: = 71- 
8 

(43) 

reduces the system of equations (41), (42) to a single 
boundary-value problem 

~-&-‘~)c=o;7=0,c= 1; 

5 -+ X,, c + 1; (44) 

5 = 0, q(z)ac/ag - kcf:f(c) = 0, 

4?6t,~J = c(C, (m - 1)~~ + qd, 

where q(7) is the periodic function with the period za, 
v](r + to) = q(7), which is determined by the equality 
q(z) = ~~(7,) (42) over the interval O<z,=ssr,,. 
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Equation (44) IS srmilar to (3). therefore using the 
procedure of Section 2.5 we obtain the following 
equation for the local diffusion flux to the particles 

In order to evaluate the contribution of interaction 

of the diffusion wakes and boundary layers of the 
particles into mass transfer between the chain and the 

fluid, consider first the solution of the problem (45) 
under the condition of complete substance absorption 

on the surfaces of spheres. 

Taking into account that j-(0)=0, we obtain the 

following expression for the local diffusion flux to the 

surface of the rnth sphere 

j m (5) = ::-‘3l 3fm’(f/3)q(T)T “, 

T = (!?I = f)T(, + T,,,(ti,“) (46) 

Expressions for the total diffusion flux I, to the rnth 

particle and the sum offluxes IiT’ to the first PI particles 

of the chain are as follows [IO, I I] 

CT. 

I, = 2n ! ~j,(O,)sinO,dO, = IT’ - I? III (47) 
. ‘1 

I,, = (37~)~ ‘[2r:T(L:3)].- ‘. 

It should be noted that the diffusion tlux to the 

second particle is only 0.63 of the flux to the first 
particle. This is indicative of the important effect of 

diffusion interaction between the reacting particles. 

10. QUALITATIVE ANALYSIS W MASS TRANSFE:R 
OF THE CHAIU OF SPHERES 

Solution of equation (45) for the periodic function 

q(7) at an arbitrary reaction law ./‘ calls for a further 
numerical analysis. Here, we shall confine ourselves to 
the qualitative analysis of mass transfer of a chain of 
spheres. 

If we consider a body consisting of spheres located 

closely one after the other on a common axis passing 
through their centers and if we assume that the fluid 

velocity field near the body surface is locally periodic 
with period 2 and is governed, in the vicinity of each 
sphere, by the principal term of expansion in r-- 1 of 
the stream function of the Stokes flow around a single 
sphere (2), then the equation for the local diffusion flux 
(written down in the approximation of the diffusion 
boundary layer) will coincide exactly with equation 
(45). By using this analogy with a single body, we, in 
order to approximately determine the total diffusion 
flux to an arbitrary chain of spheres. shall avail 
ourselves of equation (40) which, as has been already 
shown, yields rather good results for a single particle. 

In the present case Sh (Sir,,) is the mean Sherwood 

number for the whole chain of partrcles, S IS the total 
surface of particles. Taking into account that for the 
chain composed of m spheres the following equalities 
are vahd : S, -= 47~1, Sh,, = 1;;) s, r, I:‘:_’ =- l,,lii? i 

(,see equation (47)), we obtain from equation (40) the 
following formulae for the diffusion tluxes 

where y= y(m) is the root r>i equatron H(y. 

47-rl;‘krn’ j)=O (11). 

For the linear kinetics f( \-)=z \ we have 

fr(m) = 4nkrn(l,, + 47&r! ‘) I. (491 

It i5 seen from equations (4s) and (49) that in- 
teraction of the diffusion wakes and the boundary 

layers of the chain particles can lead to a noticeable 
decrease in the mean mass transfer rate of the system. 

Then the following relations hold : 

Atk- ,c (Pr, nl=const.)equatrons (48) pass over nit0 
equation (47). while at PC,--+ : (L. tti = i0ilSI.l. 
1,+4nk, which corresponds to the kinetic condition\ 

of absorption on the spheres 
As it follows from equations (4X). at U-+ I the 

following asymptotic expressions hold 

Comparison of these expressions with equations 

(47) shows that far from the beginning of the chain 
(m >> 1) mass exchange of the particle with the sur- 
rounding fluid is close to the limiting conditions of 

complete absorption on its surface (provided there is 

complete absorption on the preceding particles). This 
means that at 1 ccl<tPe’ ’ far particles in the chain are 
less “sensitive” to the reaction kineticsj: This situation 

is quite similar to the case of convective diffusron to a 
flat plate in which the principal term of the asymptotic 
expansion for the local flux j far from the beginning of 
the plate is independent of the velocity constant X and 
coincides with the respective expression for the limits, 

ing local diffusion flux in the case of complete absorp- 

tion k = I [Zj. 
The limiting equations (50) can be also obtamed 

directly from the analysis of equation (45). By assurn- 
ing that at nl+ L ,j,+O and for this reason, neglecting 
the LHS of equation (45), we, with regard for,/‘(O) = 0. 
arrive at equation (46) from which equations (47) do 

follow. 
From a physical point of stew this phenomenon can 

be explained as follows. The region of the diffusion 
wake behind the first particle I+‘, which forms the 
initial (incidence) condition for the diffusion boundary 
layer of the second particle is strongly depleted due to 
reaction on its surface. Therefore, concentration at the 
stream lines in the vicinity of the second sphere surface 
which arrives from the region of the diffusion wake WI 
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will be lower than respective concentration in the 
vicinity of the first sphere. Thus, reaction in the 
neighbourhood of the forward stagnation point of the 
second sphere proceeds under the conditions close to 
the mode of complete absorption. It is directly seen 
from equation (45) since by virtue of the properties of 
the function q(r) the following equalities should hold : 

j,(0, = n) = 0, c,(B, = R) = 0. More accurate estimates 
can be obtained if it is remembered that the con- 

centration in the region W\‘) is of the order of & (24) 
(recall that the concentration distribution in the inner 
region of the diffusion wake W\‘) was not allowed for in 
the derivation of equation (45)), therefore, c2(n) 

-JL< 1. 
The diffusion wake behind the second sphere, W,, is 

even more depleted as compared with the diffusion 
wake WI of the first sphere and leads to a further 
decrease of concentration in the region of the diffusion 
boundary layer of the third sphere. In this case, an 
increase of the surface area is observed in the vicinity of 
the forward and rear stagnation points. The surface 
area operates in a nearly diffusion mode as compared 
with the preceding spheres. At a distance from the 
beginning of the chain (m >> 1) depletion of the solution 
will finally lead to a drop in the rate of convective 
substance supply down to the values which are small as 
compared with the reaction rate and it will limit the 
rate of the whole process. This, in turn, will lead to the 
equality 

m + S, MaxSm C, -+ 0, 

i.e. to the condition of complete absorption. 
It should be noted that although the above analysis 

is a purely qualitative one, in all likelihood, equations 
(48) and (49) can be used for rough quantitative 
estimations at small m. It is, therefore, of interest to 
compare approximate equations (48) with the results 
of numerical integration of equation (45). 

11. SOME GENERALIZATIONS 

In the general case of a three-dimensional flow 
around particles (or drops) of an arbitrary shape it is 
possible to show that when the analog of the stream 
function Y near the body surface is presented in the 
form 

y = 5”(P(P> X) (5 -+ O), 

where <, p, x is a special system of coordinates fixed 
with respect to the body surface c=O and the stream 
lines [ll], the integral equation for the local diffusion 
flux and the surface concentration are of the form (get 
=l) 

j(t) = kf(l - eG, *j), 

C(t) = 1 - k&G, *f(C), 

(51) 

(52) 
yl-2u I 

Gv*w = l-(1 - V) 
s 

w(+-‘(A)@ - i)“-‘dL, 
o 

p= 1,2 >“., (53) 

v = (n + 1)-l, & = Pe-“(“+‘), go = [g55grrgxx]r=o. 

Here, n= 1 for liquid particles and n = 2 for solid 
particles. The function q(t) is prescribed parametrically 
from the expression 

V(P) = lcp(P)I”” (54) 

with the aid of equation (53); p,, are the critical points 
(lines) of incidence on the body surface (p&J = 0 in the 
vicinity of which the normal velocity of liquid is 
directed toward the body surface; equation (51) is 
valid up to singular points (lines) of outflow which are 
closest to ,u, (in the neighbourhood of which the 
normal velocity of fluid is directed away from the 
surface). The coordinate x is omitted throughout since 
equations (51)-(54) depend on it only parametrically. 

It follows from equations (51)-(54) that in the 
general case the surface concentration and the local 
diffusion flux at singular points or lines of incidence .uP 
(p = 1,2,. . .) is determined by equations (1 l), (33) at w 
=k(l-q)j-’ (co, p), where j(,, p) is the local flux at 
the points p, for limiting absorption. 

For the axisymmetric and two-dimensional prob- 
lems a/& = 0 and the system of coordinates 5 and p 
coincides with the orthogonal coordinate system usu- 
ally used in the boundary layer theory and fixed with 
respect to the body surface. 

In thecaseofaflat plateoflength L(Pe= LUD-‘)in 
a longitudinal laminar (boundary layer) flow, when the 
coordinate 5 is running across, and p along, the plate 
we have 

n = 2, Jso = 1, u(t) = yt-‘j3, y = const. (55) 

It is seen from equations (51) and (55) that at the 
forward stagnation point of the plate the following 
limiting equalities hold 

x+O,C+l,j+k (k<=c). 

The latter means that in this case the conditions for 
the incident flux to be nondepleted at the forward 
stagnation point do hold. 
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DIFFUSION CONVECTIVE POIJR UNE PARTICLJLE EN REACTION DANS UN 
FLUIDE CINETIQUE NON LINEAIRE DE REACTION EN SURFACF 

R&me-La diffusion convective pour une particule spherlque clans un tcoulement de Stokes, li grand 
nombre de Peclet, est CtudiC dans le cas d’une r&action chimique sur la surface de la particule avec une vitesse 
d&pendant arbitrairement de la concentration. Des Cquations intCgrales pour la diffusion locale et la 
concentration ii la surface sont obtenues et une mCthode numCrique de rCsolution est d&veloppCe par 
utilisation d’asymptotiques approprides au voisinage du point d’arrtt. L’effet de la vitesse de &action 
constante et de la cinCtique de rtaction sur le flux totai de diffusion i la surface ds la-particule est ttudiC. Une 
formule approchie simple est suggkrte pour diterminer le nombre de Sherwood moyen avec une pr&cision 
convenable. 

On considire une chaine de particules et I‘equation integrale correspondante est obtenue pour le tlux local 
de diffusion sur leur surface. On analyse qualitativement le transfert massique pour la chaine de spheres et on 
montre que I’intiraction des ondes de diffusion et des couches limites des particules dans ce type de systeme 
conduit B une diminution sensible du transfert massique. Des expressions approchies sont obtenues pour les 
flux globaux sur les particules en chaine. La mCthode proposle est &endue i un icoulement tridimensionnel 

arbitraire autour de particules (ou gouttes) de forme arbitraire 

KONVEKTlVE DIFFUSION AN EINEM CHEMISCH REAGIERENDEN TEILCHEN 
IN EINEM FLUID: NIChTLINEARE REAKIONSKINETIK AN DER 

OBERFL;ICHE: 

Zusammenfassung Dieser Bericht beschaftigt such mit konvektlver Diffusion an einem runden Tellchen in 
einer gleichmiioigen, schleichenden Strijmung bei hohen Peclet-Zahlen, wobei eine chemische Reaktion an 
der TeilchenoberflPche stattfindet, deren Geschwindigkeit endhch ist und willkiirlich von der Konzentration 
abhPngt. ES werden Integralgleichungen fiir den Grtlichen Diffusionsstrom und die Konzentration an der 
Oberfliche aufgestellt und eine numerische Methode, welche auf der Verwendung geeigneter Asymptoten in 
der Umgebung des vorderen Staupunktes basiert, zu ihrer Liisung entwickelt. Der EinfluB der Reaktionsge- 
schwindigkeits- Konstanten und der Reaktionskinetik auf den gesamten Diffusionsstrom zur Teilchenober- 
fllche wird untersucht. Eine einfache Niherungsgleichung wird vorgeschlagen, die die Bestimmung der 
mittleren Sherwood-Zahl mit hinreichender Genauigkeit ermijglicht. Eine Reihe reagierender Teilchen wird 
betrachtet und eine entsprechende Integralgleichung fiir den iirtlichen Diffusionsstrom an ihrer OberflBche 
aufgestellt. Eine qualitative Analyse des Stoffiibergangs wird durchgefiihrt und gezeigt, daR die Wechselwir- 
kung zwischen der DilTusionsnachlauf-StrL<mung und den Grenzschichten der Teilchen bei dieser 
Systemanordnung einen substantiellen Riickgang der Stoffiiberyangsgeschwindigkeit bewirkt. Naherun- 
gsausdriicke fiir die integralen StrGme zu den Teilchen der Reihe werden aufgestellt. Die vorgeschlagene 
Methode wird auf eine beliebige dreidimensionale Strijmung urn Teilchen oder Tropfen mit beliebiger 

OberfIHche ausgedehnt. 

KOHBEKTMBHAH AM0@,)/3MH K PEAI-MPYtoqECi YACTMIIE B )KKMAKOCTM 
HEJIMHEtiHAR KMHETMKA FIOBEPXHOCTHOfi PEAKUMM 

hHOTiWX4 PaccMarpesaercn KotiBexrHanafl :Irr+cbyIrtrc K c@epwqecroti VacTHue a 0nnoponHoM 
CTOKCOBOM noToKe npe 60nbmex ‘IACJI~~ fIerne B cnyqae, h-orna na ee noeepxHocrw npoTeKaeT 
xHMnqecKas pealcuun, CKopocTb ~oTopoti KoHeqHa w npo~3Bonbmm 06~~30~ 3a~~wT OT KOHUeH- 

TpaUww. Fl0nyqem.t mTerpanbwbre ypawemn nm JloKanbHoro ne+$y38o~~oro noToKa w noeepx- 

HOCTHOti KOHUeHTpaUHW ii pa3pa6oTaH WCneHHbIfi MeTOcl RX pIUeHWI, HCnOJIb3yIOUW~ COOTECT- 

CTsyIO”,He aCBMnTOTWKA B OK,YXTHOC~kf nepl,Heii KPltTH’VZCKOii TO'fKW. HCCneLtyeTCS 7dBWCWMOCTb 

~OJIHO~O flW@y3~0HHOrO nOTOKa Ha nOBepxHOCTb 4aCTHUbI OT KOHCTaHTbI CKOpOCTH U KHHeTHKH 

peartuww; npssenena npocran npe6nuaenHan @opMyJIa. n0780n5noma% c ~0cTaroqno BbICOKOfi 

TovHocTbm onpeaennrb cpemee sicno Ulepayzta. 

PaccMOTpeHa UenOqKa pearHpymtUHX WCTWll W llOAyreH0 COOTBeTCTBymuee 8HTerpflbHoe 

ypasnense nnn noKanbHor0 ~HI$~~~HOHHO~~ n070Ka Ha ux nosepmocTH. FIpoeeneH KaqeCTBeHHbG 

aHanw3 Maccoo6MeHa Neno'lKH c+ep u noKa3aHO. wo B~aLiMOneihZTBHe ilH@+yJHOHHbIX LnenOB H 

norpancnoea WCTHII B ynoprnogeHHblx csicTeMaX ~a~oro pona II~HBO~HT K cyurecTBeHH0Mj 'Top- 

bto)l(eHmO UHT~HCHBHOCT~~ npouecca Maccoo6Mena. IlonyreHbl npH6mmembIe BbIpmKeHHr nJIsI 
HHTe~pa,,bHbtxnOTOKOB Ha VaCTWUblUeno9KW. 

npennOxeHHb$i MeTon 06o6tuaeTcn ~a cnywi npo&issonbHcro TpexMepHoro 06leKaHHN WCTBU 

(unu KaUeJlb)n506oti @CpMbl. 


