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Abstract — The paper is concerned with convective diffusion to a spherical particle in a uniform Stokes flow
at large Peclet numbers in the case of a chemical reaction occurring on the particle surface with the rate being
finite and arbitrarily dependent on concentration. Integral equations for the local diffusion flow and the
surface concentration are obtained and a numerical method of their solution is developed based on the use of
the appropriate asymptotics in the neighbourhood of the forward stagnation point. The effect of the reaction
rate constant and the reaction kinetics on the total diffusion flux to the particle surface is studied. A simple
approximate formula is suggested allowing determination of the mean Sherwood number with adequate
accuracy.

A chain of reacting particles is considered and a corresponding integral equation is obtained for the local
diffusion flux on their surface. A qualitative analysis of mass transfer for the chain of spheres is performed and
it is shown that interaction of the diffusion wakes and boundary layers of particles in this kind of the ordered
systems results in a substantial decrease in the mass transfer rate. Approximate expressions are obtained for
integral fluxes to the chain particles.

The proposed method is extended to an arbitrary three-dimensional flow around particles (or drops) of

arbitrary shape.

NOMENCLATURE

instantaneous number of the point of di-
vision of the interval [0,¢,];

A, constant defined by (17);

A, constants in Acrivos and Chambre’s Js local diffusion flux;
equilibrium equation; i° local limiting diffusion flux;

a, sphere radius; K*, = 3 1AT-12/3)ek;

a, factors in the series-expansion of function k, din.lensionless constant of the surface re-
n(t): action rate;

B(p,q), beta-function; K, dimensional constant of the surface re-

b, forward stagnation point region; action rate;

by, factors in the series-expansion of function L, plate length;
o(t); l, distance between particles;

C, reagent concentration close to the surface; m, number of the sphere in a chain;

Co, surface concentration under conditions of N, number of divisions of interval [0,2,];
complete absorption; n, number of the point of division of the

c, reagent concentration in flow; interval [0,¢,];

Co» substance concentration far from a sphere ; Pe, = aUD™*, Péclet number;

o concentration distribution in a diffusion b, number of the point (ling) of incidence ;
boundary layer under conditions of com- % root of equation (11);
plete absorption; r, radial coordinate;

D, diffusivity ; S, =¢719;

d, diffusion boundary layer region; S, particle surface area;

e, outer region; Sh, mean Sherwood number;

jA function determined by the mechanism of Sho, mean Sherwood number under conditions
surface reaction ; of complete absorption;

G, operator defined by equation (35); t = /3% — 0 + }sin 26];

G,, operator defined by equation (52); Lo, =n./3;

o - [gééguuglei:o; U, fluid velocity far from the particle;

9es Guus 94  COmponents of metric tensor; u, =c— Cf.i”;

, dimensionless total flux; W, diffusion wake region;

I*, dimensional total flux; w®,  diffusion wake subregions;

I, dimensionless total flux under conditions X, =& (n - 0);
of complete absorption; modified Bessel X, coordinate running along the plate;
function;; Y, =¢ Yr—1);

m, total diffusion flux to the first m particles of z, =3&32;
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the chain;
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Greek symbols

%, =2

. — Pe - 1.3,

4 =4zt — )71 2

0, = /3sin0:

o, angular coordinate ;

K, order of reaction;

1 coordinate of the point (line) of incidence;
v, kinematic viscosity of liquid;

é; J— ld/l 2;

(&, u, 7), coordinate system for a three-dimensional

flow in Section 2;
I, RHS of Acrivos and Chambre’s difference

equation:
Fen = %’(’3)’2
T, ={m— 1)1y + Ty’
T =73,
tﬂ!’ = I(em);
oo = 1,(0);
®(t), kernel of integral equation;
¥, stream function analog for a three-
dimensional flow:
¥, stream function;
o, = L2V (13 ke
Superscripts
(h), forward stagnation point region:
{d), diffusion boundary layer;
{e), outer region:
(i), subregions of the region W, i= 1,2, 3, 4
Subscript
m, number of the sphere in the chain.

L INTRODUCTION

OnE oF the main objectives of the physico-chemical
hydrodynamics is to determine the total flux of the
substance dissolved in a liquid to a reacting particle. In
this respect the problems involving the finite rate of the
surface reaction which present themselves, for exam-
ple, in the case of the integral-order reactions and in
the case of the Langmuir surface fractional-order
reaction kinetics [1] are of considerable interest.

The problem of diffusion to a flat plate in a viscous
incompressible fluid flow at large Reynolds numbers
was earlier considered in the diffusion boundary layer
approximation for the first order reaction in [2] and
for the arbitrary surface reaction kinetics in [3, 4].

The problem of convective diffusion to a spherical
particle moving in a gas at small Péclet numbers for the
linear and arbitrary kinetics was considered respec-
tively in [5, 6] by the method of matched asymptotic
expansions.

In the present paper, by using the method of the
matched asymptotic expansions, the distribution of
concentration near a sphere in translational Stokes
flow has been obtained for large Péclet numbers in the
case of a chemical reaction occurring on the sphere
surface with the rate which depends arbitrarily on the
reagent concentration close to the surface. An impor-
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tant feature of this problem, which is absent in the fat
plate case [ 2-4], is that concentration in the vicinity of
the forward stagnation point of the sphere differs from
a non-depleted concentration in the main flow. Be
cause of this, fairly general results. which were ob
tained by Acrivos and Chambre [4] and which were
based on the additional inference that concentrations
at infinity and at the point of incidence are equal, as
well as their method of numerical integration of the
corresponding integral equation for the surface con-
centration cannot be directly applied in the present
case.

2. STATEMENT OF THE PROBLEM.
CONCENTRATION DISTRIBUTION IN A
DIFFUSION BOUNDARY LAYER

Consideration is given to the steady state convective
diffusion of substance to a solid sphere of radius ¢ in a
uniform Stokes flow of an incompressible fluid having
the velocity U and concentration ¢, far from the
sphere. It is presumed that there is 4 chemical reaction
on the sphere surface occurring with the finite rate
Koo f(Ciey), where k' is the reaction rate constant, (' is
the reagent concentration at the surface. The function

[ is determined by the particular reaction mechanism

on the sphere surface. Thus. for the x-order reaction

f0) ="

In spherical coordinates, » and . fixed with respect
to the particle, the dimensionless equation of the
steady state convective diffusion and the bounduary
conditions are of the form

I (”f‘t/) ce M fe
sing\ 80 & Or 00
e ( e ]
= DI I L - §i i X
arl dr) o osindl (”()(. " ol i

re=Locilr —hf(e)=00r— v - 10 =0,0c08 =
0:8 = 7,6¢/00 =016 = Pe== qUD Uk = Kab '

f(0) = 0. Here ¢ is the substance concentration, y is the

stream function, Pe the Péclet number, D the diffusion
coefficient; the angle ¢ is measured from the flow
direction. The scales in equation (1) are taken to be the
sphere radius, the rate and the concentration at
infinity.

The dimensionless Stokes stream {unction for a
sphere 15 of the form

y _{"r., N )Sm:!?
! LA P B

1k

We shall hereafter assume that, as usual, the Peclet
number for fluids is large, i.e. ¢ « 1. An asymptotic
analysis of the problem (1), (2) at « —~ O [or the case of
complete absorption on the sphere surface ofr = 1)
=0 (k = r)was carried out by Sin and Newman |7}
and for the case of the linear kinetics. f(C) = C, by
Polyanin and Sergeev [8].

Atz « 1, the flow in the vicinity of the particle can be
divided into several characteristic regions with dif-
ferent mechanisms of mass transfer [ 7]. These are: the
outer region e, the region of the forward stagnation



Convective diffusion to a reacting particle in a fluid

point b, the diffusion boundary layer 4 and the region
of the diffusion wake W, the latter, in turn, being
composed of the subregions W% (i = 1,2, 3,4). Ineach
of these regions, equation (1) is replaced by an
approximate one by isolating the principal terms of the
expansion in the small parameter &. Agreement be-
tween the solutions for separate regions is ascertained
by asymptotic matching at their arbitrary boundaries.

In the outer regione = {r — 1 > 0(¢),0(¢) < 6} (here
and subsequently, inequalities within braces indicate
the order of characteristic dimensions for the region
considered) the RHS of equation (1) is negligibly small
and diffusion plays a minor part in substance transfer.
Here, concentration retains its constant value equal to
that at infinity, i.e. ¢©® = 1.

In the region of the forward stagnation point b =
{r—1<0(), n—0<0(e)} equation (1) can be slightly
simplified, but it will retain the terms which describe
diffusion both in the tangential and in the radial
directions. It will be shown later (see Section 5) that
this region does not affect the distribution of con-
centration in the diffusion boundary layer and in the
diffusion wake of the particle.

Convective diffusion in the diffusion boundary layer,
d = {r — 1 < 0(c),0(e) < 8}, whichis composed of the
convection along the sphere surface and the lateral
diffusion, predominates in the process of the dissolved
component transfer to the particle surface.

Employing substitutions & = ¢~ 'y t = T(0) =
\/é[n — 6 + 4sin 20] and retaining the principal
terms of expansion in &, we obtain from equations (1),
(2) the following equation and boundary conditions
for the concentration distribution in the diffusion
boundary layer

3 2
(% - 5-1(3%)&"’ —0 O<t<ty)
E=0, n(t)acD/0¢ — ekf () = 0;
t=0, £#£0, ?®=1; (3)

(o, D1

n) = ésin T8, t=T[T%)],

n/3
to = t(0) = .

Here, the last boundary condition at t =0 is the
condition of incidence [2].

Solution of the diffusion boundary layer equation
(3) under the condition of complete substance absorp-
tion on the sphere surface (k = oc) was obtained in [2]
as:

(& 1) = T~ (1/3)9(1/3,83/91),

x
(G = f e"T "y,

o]

rg)=y¢+w). @

Following [8], we perform the substitution z =
2/3E%2 and seek the solution of the problem (3) in
the form ¢ = ¢ + u; in so doing, we obtain for the
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unknown function u the following equation and the
boundary conditions

ou 0*u 1 ou

Fr = v ®
du ke 2173
=0’ B I et 2\1/3 77 _ = (),
z z az+(3) ﬂ(t)f(u) rd)?
(6)
z—ooc, u—0; t=0 u=0. )]

The solution of equation (5) is sought in the form

2—1/3 t
u(z,t) = WJ DNt — 2)"*exp(— (*)d4, (8)
3

[

(=42t - )" 0<t<ty).

The function (8) satisfies equation (5) and boundary
conditions (7) for any kernel ®(t), and over the interval
0 <t < tq it has the following properties [9]:

-1/3 't

ré Jo
li_r% [z!30u/dz] = —@(r).

limu=L,®= BUNE — 1) 2Rd,

z—0

®

It follows from (6) and (9) that the function ®(t) is
the solution of the integral equation

n(6)®() + 2' PTG K (L+ @) ()t ™17 = 0,
(10)

K*=3"1°T"1$)ek, a=2'""T"1(})
The function #(t) in the vicinity of the point ¢ = 0 has

the series expansion

el
ne)= Y ag@ V3, g, =3232718 q =14 .
n=0
and the property t — to, 5(t) — ag(t — to)'">.
If the function f(x) is continuous, then
d(t) - agt 13 + O(t~ ) at ¢ - 0, where q is the root
of the equation

Hgw)=q+oflg—1=0,
(@ =4-2'3T(d)ke).

(11)

Here and subsequently, unless otherwise specified, the
validity of the following inequalities is assumed:
f(1)>0; f,, >0 at x > 0. By virtue of the fact that
HO,0)<0, Hl,0) >0, H; >0 (0 < w < ), the
above properties mean that equation (11) has a single
non-negative root q,0 < ¢ < 1. The above inequalities
hold, for example, when the reactions are of the order
k> 0.

If the function f=f(x) can be expanded into a
Taylor series converging in a neighbourhood of the
point x=g, then, similarly to the linear kinetics case
[8], the solution of equation (10) can be represented in
the form of a locally converging series

Q@)= ) bt VB by =ag.

n=0

(12)

In particular, the coefficient b, can be written in the
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following form [B(p, q} is the beta function]
by = ayall — g)a, + K*B{1,/3, 40 f0x],

NGt

i13)

The coefficients b, and b, will further be used to
evaluate the total diffusion flow to the particles.

With the aid of the function @, the concentration
distribution in the diffusion boundary layer may be
given as

CNE 1) = T 13)(1/3, 8391

i

2*1-3 1 R . 53 g
O~ )3 exp( - di.

E— T 4
r23)), o — 4y |44 1A

i

3. CONCENTRATION DISTRIBUTION IN
A DIFFUSION WAKE

Consider the diffusion wake region W adjacent to
the diffusion boundary layer region d and the sphere
surface in the neighbourhood of the point § = 0.r = 1.
It was shown in [7] that the region Wconsists of four
distinctive zones: the convective boundary layer re-
gion W the inner wake region W'¥, the rear
stagnation point region W'* and the mixing region
W,

The diffusion wake region, the boundary of which
corresponds to f~ ¢, contributes but slightly to the
integral diffusion flow to the particle surface. However,
the concentration field in W will play an important
part in mass transfer of the particles that move in the
diffusion wake of the first particle [10, 117 (see Sections
9, 10).

Estimation of separate terms of equations (1}, {2} in
the convective boundary layer region of the wake

W =10@) <r -1, O%) < ¢ < O{e?)!

shows that the RHS of these equations may be
neglected. Therefore, the concentration depends on the
stream function alone and retains the constant vatue
along the stream lines which is equal to the value at the
exit from the diffusion boundary layer. The con-
centration expression in W' is determined by match-
ing with solution (14) and has the form

eP(g) = ‘.(d)(éwt(e)’lﬁ"O‘,’uconxL = W& 0. (15)
In order to investigate the inner wake region
W =10 <r -1 <O ¢ < Of:)!
and the mixing region
W =10 <, ¥ < O(7)

in which the radial trans fer is of no consequence, let us
write the convective diffusion equation in terms of the
variables r, J taking into account the fact that for these
regions the first term in brackets on the RHS of
equation (1) may be neglected

Yo e 3t s o2 ) oc {
e e J1S [ e {16
snae ¢ Ve e + (Yrop + cot Oifrg) Y (16)

Here all of the coefficients should be expressed in terms
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of # and ¥ with the use of expression (2) for .
The region of the rear stagnation point

WS =10 < 0@), r— 1 < 0},

in which the transfer in both the radial and the
tangential directions is substantial, and the inner wake
region W'* will be considered simultaneously.

The equation and the boundary conditions for W'
in terms of the variables y=r—1, {=¢" % have the
form

(7

Sl
Lpea H
> T

(8N

= (), (,un‘; - “‘HE:
D20

RS PIE:
o Aet el

A= 3T713) 13 - 2703 (t) ]

Here the equation has been obtained from equation
(16, while the boundary condition at infinity ({ — =)
expresses the condition of matching with the solution
in the convective boundary layer region W equation
(15}.

In the derivation of the above boundary condition,
the asymptotics

-0, u{g, o) - ‘(3’2}& 5(1){{0}5

was taken into account which follows from equation
(10) and from the second property of the function ®
equation (9).

The equation and the boundary conditions for W
in terms of the variables Y= ¢"'{r— 1), § = ¢~ '0 will
be of the form
3,03 Al i o gt

200y o 27Tes Ty T sast s

Vg = OO o Y, AYS,

The last boundary condition is the condition of
matching with the solution (14) for the boundary layer.
The formulation of the problem {18}, as well as of the
problem (17), must be supplemented with the con-
dition of the conformity of solutions in the regions W@
and W'

(,(BD

()“} )= (‘(2’(}7 s ()} (19)

Let us now show the manner in which two
boundary-value problems (17)-(19) can be split up
and each reduced to a successive solution, Let us
assume that we have obtained the solution for W®
Then, it follows from the last boundary condition (17}
at {— v {{ is further replaced by the variable s
=¢"%20) that in this region the solution can be given
in the form ¢**' = \/"/z: w{y,s), y=r-—1.

By assuming that the solution for the full problem
has been found, we shall write it in terms of the



Convective diffusion to a reacting particle in a fluid

=const.), the solution of the full equation (by de-
finition) goes over into ¢'?, i.e. the following holds

£—0, v{y,s,8) — ﬁw(y, s)+ O(\/;). 20)

We assume here that the boundary condition for
concentration on the particle boundary is of the form

y=0,Flg)= Z Fyk(c) =0, 21)
k=1

F,(Ac) = A™F, (c); O0<yp <y<..,,

where F, are the operators homogeneous in ¢ which
are independent of the angle § and the parameter ¢.
Multiplying the boundary condition (21) by ¢~ 7+/2,
employing the representation (20) and taking the limit
as ¢—0, s=const., yield the following boundary con-
dition for concentration in the inner wake region

y=0, F, (¢ =0. (22)

Having obtained the concentration distribution in
the inner “diffusion wake region W, and having
written it in terms of the variables Y, 5, we, letting &
approach zero in ¢*(Y, S, ¢), will obtain from (19) the
boundary condition for the rear‘stagnation point
region W™ at Y- oc.

In the case of the k-order surface reaction,at k < 1, y,
=K, y,=1; F, =kc®, F, = 0c/dy;atk>1,y,=1 7,
=k, F =0¢/dy, F.=kc¥, while at x=1, y,=1, F,
=dc/0y —ke.

When the boundary condition includes the para-
meter ¢ or other quantities connected with it by any
relations, the procedure of obtaining the boundary
condition for W'® remains the same and consists in
isolation of the higher-order term of expansion in ¢
from (21) on having substituted (20) into (21).

The case, which is most important for the diffusion
boundary layer, is characterized by ke~ 1. Then, for 0
<x <3 the above procedure yields

y=0, c*=0. (23)
The solution of the problem (17), (23) is of the form

[8]:
¢ = (me) 22712 Ay RO(—1/2, 1, —{/2y), (24)

where ®(a,b,c) is the degenerate hypergeometric
function.

Equations (24) and (19) give the boundary condition
for concentration in a neighbourhood of the rear
stagnation point:

Y o0, ¢® oen'P2712 4YV2@(—1/2, 1, —3/2YS2).

The problem (18) with the latter boundary con-
dition was studied by numerical methods at k = «
7}

The contribution of this region into the integral flow
to the sphere is insignificant, therefore, it will not be
analyzed here.

Consider now the mixing region

W® = {0~ Y) < r, ¥ <0},
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in which, just as in W@, diffusion along the stream
lines may be neglected. The concentration ¢'*' satisfies
the following equation and boundary conditions

™ 18 8™
o gt aE

[0c9/0E)e-o =0,
p = 0) = [cM(E) + (L, y) ~ AL] s

Here the initial condition is determined by match-
ing the solution in the mixing region W' with the
solutions in the regions W'’ and W',

The solution of the problem (25) is of the form

e &+ 5*2}
@) - s _
PO L

(0 = o, & = Y1), (29)

Eoe 1,

x I <%;>c‘“(é*)dﬁ*. (26)

Here, I, is the modified Bessel function and ¢'V{£} is
determined from equation (15).

The expressions for concentration distribution in
the diffusion wake regions W'» and W show that
the distribution of concentration in them differs from
that in the case of complete absorption (k= ) by the
proportionality factor 4 alone (17) which includes an
additional term with ®(z,) <0 being responsible for the
increase of concentration in these regions as compared
with the limiting case k= oc. It is seen from equation
(24) that on the flow axis =0 at r—1<0(s"?!) the

concentration is of order \/¢ and increases in pro-
portion to the square root of the distance up to the
body surface.

4. CONCENTRATION DISTRIBUTION IN THE
YICINITY OF THE FORWARD STAGNATION
POINT. UNIFORM APPLICABILITY OF THE
DIFFUSION BOUNDARY LAYER SOLUTION
It follows from the results of Section 3 (at k=00
[7]) that the diffusion boundary layer approximation
is not uniformly applicable as to the parameter e« 1
over the entire flow region. In particular, a special
analysis is required for the rear stagnation point
region since here both the normal and tangential
substance transfer along the particle surface is sub-
stantial. This leads to the following additional ques-
tions: (1) whether the diffusion boundary layer
approximation is valid in the region of the forward
stagnation point (in view of the fact that the Jacobian
of the transformation from the coordinates r, 8 into
the Mises variables i,8 vanishes at the forward
stagnation point) and (2) whether any error results
from the additional boundary condition ¢¥(z = 0)
=1 (condition of incidence [2]) [equation {1)] in the
actual concentration distribution over the flow.
In order to perform the analysis, let us introduce
mto

b={r—1<0(), = — 6 < O0(e)}

the prolate coordinates
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Y= 'r— 1), X =6 Yn~0) (27)

Expressing equation (1), with regard for (2), in
terms of the variables X, Yand retaining the higher-
order terms of expansion in ¢, X, Y= 0{1), we obtain
the equation and boundary conditions for the region
of the forward stagnation point

3 det ety @t ¢ e

v v xS )= xS

3 ( vyttt T ey Yy ax Y ax
{28)

Y=0,0W0Y - ekf(c®) =0V », ¥ o 1,

X =0, c™6X = 0.

In order to complete the formulation of the prob-
lem (28), it is necessary to add the condition of
matching with the boundary layer solution (14)

X - ) =0 > n), Y=const.  (29)

For the explicit form of the concentration ex-
pression in the diffusion boundary layer at an arbit-
rary boundary with the region b to be obtained, we
shall employ the asymptotics for the kernel @1} —
agt™ '3 + O~ ') at t — 0, where g is the root of
equation (11). In view of the above, we can obtain
from (14)

Y ) J(E, 1) + O(F2), (30)

J i [

T _— ;103
25°T(2/3) i

A
]

([ . /‘1)” 2:3

A Ly -
X exp[ T - )')Jd/

The expression for J can be put into a more
simplified form. The properties (9) of the functions in
the form of (8) show that J(&,t) is the solution of the
boundary-value problem

BrCX A ;
“F T A (31)

t=0,J=0,l>2, J20:l=0,J=4q.

The first two boundary conditions are due to the
representation (8), while the last one has been ob-
tained by direct computation of the integral (30} at {
=0, A direct check shows that the function

JE =g+ T7H13)1 — q)p(1/3,8%/91)

is the solution of the problem (31).
Using the substitution {27) and taking the limit as
& - 0, we obtain the matching condition in the form

X o oo, ™o g + DI — gip(1/3,Y32)
(32
It can be easily verified that the solution of the

problem (28), (32) does not depend on the coordinate
X and coincides exactly with the asymptotics (32).
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The equality g =0 corresponds to the case of limiting
absorption.

[t is seen from equation (32) that concentration in
the region b depends only on the coordinate ¥ and
increases rapidly from its value at the particle surface
c(0}=¢ up to the concentration in the outer region.
Concentration in the region b is determined only by
the boundary condition at X — -+ This means that
the solution for the diffusion boundary layer {14 is
uniformly applicable over the entire region /= t:),

The concentration and the local diffusion flux ax
the forward stagnation point f= 7. r = 1 {at =01 are
determined by

Cl0) =g, j(0) = ken "1 ~y) 133

where ¢ is the root of equation {11},

It follows from equations {11) and (33) that the
diffusion flux in the vicinity of the forward stagnation
point increases with k and decreases with increase in
the reaction order .

In the particular case of the first-order reaction. »
=1, we have

COY= {1 + w) ' JO)= k{1 + )
o= 13283 0

Hence, j=ke® s ke, , =k, and in the general case
the kinetic regime in the vicinity of the forwurd
stagnation point are absent. Note, that in the case of
convective diffusion to a flat plate [2 4] the neigh-
bourhood of the forward stagnation point is always
the region for the kinetic reaction regime. For a solid
sphere, the kinetic condition in the region of the
forward stagnation point exist only at k<« Pe' .

5. EQUATIONS FOR THE LOCAL DIFFUSION
FLUX AND THF SURFACE CONCENTRATION
Using the integral equation for ®(10}, we shall now
obtain similar equations for the local diffusion flux j
= [8c“/r], ., and the surface concentration oir =1,
) = C(r).
Equation {14) and the properties (9) give the re-
lationship between the kernel and the local flux /

R

21 3
Dty = oy é:( no et
" I(1/3)et? 30
Substituting this expression into equation {10} and
taking the equality j=kf(C) into account yield the
following integral equations for the local diffusion flux

and the surface concentration

ey = kf (L — kPG R {34}
C)y=1—K*G#f((), (35)

t
Gxrw = { wl g AN~ 2y Y da
Jo

At K*- 7 (which corresponds to Pe=const.
k— ), equations (34) and (35}, with the equality j (0}
=0 taken into account, yield

e a3 A e P CY = 00 136
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This solution corresponds to the case of complete
absorption which is specified by the concentration
distribution (4).

At K* — 0 (which corresponds to Pe —» «, k =
const.), the integral equations (34) and (35) show
that in the principal approximation over the para-
meter K* the local diffusion flux and the surface
concentration are constant over the entire sphere
surface :

JO = k(O] =kf(1), C =, =1. (37)

From this it follows that at k « Pe!’® the conditions
for the reaction to occur throughout the entire sphere
surface (except for a small region in the neigh-
bourhood of the point of outflow 8 =0} are close to the
kinetic conditions. The explanation of this result lies in
the fact that with increase in the Péclet number the
diffusion flux can increase only until the surface
reaction becomes a limiting stage in the diffusion
process.

6. NUMERICAL SOLUTION OF THE INTEGRAL
EQUATION FOR THE LOCAL DIFFUSION FLUX
In order to obtain a numerical solution of the
integral equation (34), let it be written down with
account for (36) as

. 1
=4 (1 T TR

CIA) s g2 >
xjojo(i)i (t — 1)"23di).

Partition the interval [0,t,] into N equal parts
[G—1)At,iAtr], At=to/N,i=1,...,N. The above equa-
tton will be approximated by the following system of
algebraic equations for the function j(i) (from now on
the number of i is indicated as the argument of the
function j(iAt)):

o b 1) jn-1)
jn) = kf {1 T(1/3)T(2/3) [2 <f0(") e 1))

e M0 i= 1) 1
P (z Q@(i) " - 1))1"% — " ﬂ} '

In writing down a numerical scheme to evaluate the
integral, it was taken into account on the RHS of this
equation that the functions j(t) and j°(t) have no
singularities over the interval [0, £, ]. The value of j(0) is
determined by equation (33). The function jo(t) is
determined according to equation (36).

Hence, the problem of determining the value of j(n)
reduces to the solution of the transcendental equation.

It should be noted that the above numerical method
for the solution of the integral equation (34) is more
simple than that used by Acrivos and Chambre [4]
since it does not involve the computation of
derivatives.

The results of numerical solution of equation (34)
are presented in Fig. 1, where dashed, solid and
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dashed-dotted lines show the local flux distribution
over the particle surface for the 1/2-, 1- and 2-order
reactions, respectively. Curves 1,2 and 3 correspond to
K*=0.1, 1, cc.

Figure 2 illustrates the effect of the reaction rate
constant for the same reaction orders on the dimen-
sionless total flux I to the particle. Here

sin 6d6,

I* " dc
I= =2n| —
aDc, o Or|,=1

Iy = (3n)°? [2e0(1/3)] 7Y,

where I* is the dimensional total flux, I, is the
dimensionless total flux provided there is complete
substance absorption on the sphere surface.

7. CERTAIN FEATURES IN DETERMINATION
OF SURFACE CONCENTRATION

Consider now in more detail the equation for the
surface concentration (35). If the concentration on the
LHS of equation is supposed to be prescribed, then
equation (35) may be looked upon as the Abel
equation for the unknown function f(C). Solving
equation (35) for f(C) and introducing the derivative
under the integral sign, we shall transform equation
(35) to

t

kf(C) =j0(t) {[1 — C(O)] —_ tlr'SJ‘ E‘_g(t _ A)—1/3 d/l}
o di

, (38)
where j° is the local diffusion flux provided there is

complete absorption of the dissolved substance on the
particle surface (k= oc) (36).

02 04 06
F1G. 1. Local diffusion flux to the particle surface. —— — surface
reaction of the 1/2 order; ——, first-order reaction; —-— - —

s

second order reaction. Curves 1, 2, 3 correspond to K* = 0, 1,
1, and oc.



1178

A. D. Porvanin and Yu. A, SERGERV

FiG. 2. Dependence of the total diffusion flux on K*. -

— reaction of the 12 order; -

K*

— -, first-order reaction ;

- . second-order reaction.

Equation (38) will coincide with the equation ob-
tained by Acrivos and Chambre, but derived by
another method [see equation (6) of ref. 4], if we omit
the terms in square brackets which are due to the
difference between the concentration at the point of
incidence and the non-depleted concentration in the
flow far from the particle, C{t=0)#c(r=3)=1 The
proviso was made in [4] that in the limiting case of
complete absorption, ¢(r=1)=0 (k= ), the integral
on the RHS of the derived equation should be looked
upon as the Stiltjes integral. However, in the present
case, as it follows from (38), the integral in Acrivos and
Chambre’s equation at any k should always be re-
garded as the Stiltjes integral.

Moreover, in their method of numerical integration
of the respective integral equation {equation {11) of
[4]) Acrivos and Chambre assume that the surface
concentration at the point of incidence is known and
equal to the non-depleted concentration ¢c(t =0)=1. 1t
can easily be shown with the aid of equation (38} that
in the general case the RHS of the difference equation
(11) of {4] should have the form

2
M= %n‘”{l - C0)]

n—-1

+ COHR™? = (1 = 122+ } ChyA, -, (39)
A—1
where A, are some constants independent of con-
centration, n=1, 2, ...

Equation (39) differs substantially from equation
{11) of [4] and coincides with the latter only in special
cases when the equality C(0)=1 is valid. As shown
earlier, for a Stokes flow around a sphere, the con-
centration at the forward stagnation point (33} is
governed by equation (11} (it can also be obtained
directly from equation (38)) and can differ greatly from
the non-depleted concentration. In particular, at
kPe~1? » 1, the inequality C{0) = ¢ « 1 holds.

It should be noted that in a general case, depending
on the kinetics of the reaction f==f (x), equation (1) may
simultaneously have several roots corresponding to
different reaction conditions on the particle. This

phenomenon is a typical one for the problems of the
combustion theory [1].

1t will be shown later (see Section 11) that in the case
of a flat plate in a viscous incompressible liquid flow at
large Reynolds numbers, which was considered by
Acrivos and Chambre in [4], the limiting equality C(0)
=1 does hold for any k and arbitrary form of the
function £ The only mode of reaction for any f (k+ )
and its nil effect on the concentration at the point of
incidence in this singular case are due to the following
two reasons : {1} inapplicability of the expression used
in this work for the stream function and obtained in the
approximation of the hydrodynamic boundary layer
in the vicinity of the peint of incidence; and (2)
inadequacy of the diffusion boundary layer approxi-
mation in the vicinity of the forward stagnation point
of the plate. Both reasons are similar in character and
stem from the fact that the Reynolds numbers Re,
=xUv~! and the Péclet numbers Pe . =xUD7' (x is
the coordinate running along the plate) are small in
the vicinity of the forward stagnation point of the plate.

Note, that in the case of the Stokes flow around a
sphere the diffusion boundary layer approximationisa
correct one and uniformly applicable in the vicinity of
the forward stagnation point (see Section 4).

8 APPROXIMATE EXPRESSION FOR THE
MEAN SHERWOOD NUMBER

The results of numerical integration of equation (34)
show that the mean Sherwood number can be approx-
imately determined from the algebraic (transcenden-

taly equation
Sh
Sh=k ( 1= o
4 Sh

o/

i
), Sh o= -

§° (40)

where Sho=1,5" ! is the mean Sherwood number per
particle provided there is complete absorption of the
substance on its surface c(r=1,0)=0 (k= ), S is the
particle surface area. The solution of equation (40) can
be written in the form Sh=(1-—¢)Sh,, where ¢ is the
root of the equation H(g, kShg '}=0 (11).

A check of the validity of the above formula has
shown that in the case of a Stokes flow around a sphere
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the maximum deviation of the root of equation (40)
from the results obtained by numerical integration of
equation (34) is observed at K* ~ 0.1 (xk =1/2, 1, 2)
and does not exceed 15%,.

Let us now show that it is also advisable to use
equation (40) to determine the mean Sherwood num-
ber at small and moderate Péclet and Reynolds
numbers.

1. At small Péclet and Reynolds numbers in the case
of a uniform flow around a sphere for any velocity
constant k and arbitrary form of the function f,
equation (40) yields a correct (exact) result at least for
the first three terms of the asymptotic-series expansion
of the Sherwood number in a small Péclet number!
This is proved by direct substitution of the expression
for the mean Sherwood number Sh,, obtained for the
case of complete absorption (k= oc) [12], into equa-
tion (40) with subsequent series expansion in a small
Péclet number, and finally, by comparison with the
data of [6].

2. For particles of any shape at an arbitrary f
equation (40} yields a correct asymptotic result in the
case of small and large reaction rate constants, k—0
and k— oo, for arbitrary Péclet and Reynolds numbers.

3. The validity of equation (40) at the finite Péclet
and Reynolds numbers was tested with the aid of the
results of [ 13] obtained by numerical methods for the
problem of mass transfer of a spherical particle
involving heterogenous chemical reaction of the first
order, f(x)=x. It follows from the Table in [13] (p.
130) that in this case too equation (40) provides very
good results (to within 5%).

The considerations given above show that equation
(40) (recall the assumption that f{1)>0;f, >0 at x>0
— the reason for equation {40) to have a single root)
may be used to approximately determine the mean
Sherwood number for any k and f over the whole range
of the Péclet numbers (0< Pe< oo) for laminar flow
around particles of an arbitrary shape. In this case, for
equation (40) to be used, it is required to know only
one single constant, Shy,, which is determined from the
solution of a substantially simpler auxiliary problem
subject to the condition of complete absorption of the
dissolved substance on the particle surface (note that
Shy can also be determined experimentally).

9. MASS TRANSFER OF A CHAIN OF SPHERES.
EQUATION FOR THE LOCAL DIFFUSION FLUX

Consider now convective diffusion to a chain of
spheres of equal radius. The spheres are assumed to be
arranged one after the other on the axis of a uniform
Stokes flow and the dimensionless distance between
the spheres satisfies the condition 1 «/« Pe'’® (here, as
before, the sphere radius is taken for the characteristic
length scale).

The condition [« Pe'”® means that mass transfer of
cach subsequent sphere m is controlled by con-
centration distribution in the convective boundary
layer region of the diffusion wake W, of the
preceding sphere [ 10, 11]. Owing to the condition that
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1« the flow field in the vicinity of each sphere is

* determined by equation (2) to within O{I™ ). The case

of rather a loose chain of particles at / > O{Pe'/3) which
corresponds to the interaction of the boundary layers
d,, with the mixing regions of the diffusion wake W,
is not considered here and can be analyzed in the
manner stmilar to [10].

The concentration in the convective boundary layer
region of the diffusion wake W’ of the mth sphere
retains constant values along the stream lines. These
are equal to concentration at the exit from the diffusion
boundary layer d,. Hence, once the solution ¢ =
¢, 1,) in the diffusion boundary layer of the mth
particle is known (here ¢ and 1,,=1(8,,) are determined
in equation (3), 8, is reckoned from the point of
outflow), then the distribution of concentration in the
convective boundary layer region W' is determined
by the expression c{(£) = ¢¥(¢, 13), 19 = 1,,(0).

The concentration distribution in the diffusion
boundary layer of the mth particle is determined from
the solution of (3) where the “initial” condition at t =90,
¢=1 is replaced by the condition determined from the
concentration distribution in the convective boundary
layer region W'l of the (m— 1)th sphere.

By analogy with the results of [ 10, 11] it is possible
to obtain the recurrent system of the boundary-value
problems which determines the concentration distri-
bution in the diffusion boundary layer of the mth
sphere (m=1, 2, ...) in the form

2

£=9, ’?m(rm)acg};faf - ka(Cf:}), =0;
o, e o151, =0,
=) e = 1

Here the function n, =
parametrically

Nm{tm) is prescribed

3
N = \/_~2~sin9m, T = g(’n - gm + 1/25"129"1)
(42)

Substitution of
J3

T={m~ 1)1y + Ty, 1o = 10 = T Y_

=W

reduces the system of equations (41), (42) to a single
boundary-value problem

(}%— ‘1%)c=0;t=0,€=1;
Em o, o1,

¢ =0, n(t)dc/0 — kef(c) = 0,

D Tm) = (&, (m — 1)To + 1),

where #{t} is the periodic function with the period 1,,
n{t + 7o) = n(t), which is determined by the equality
n(t) = n(t,) (42) over the interval 01, =t <1,.

(44)
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Equation (44) 1s similar to (3), therefore using the
procedure of Section 2.5 we obtain the following
equation for the local diffusion flux to the particles

~
i

o o gy 23
3ty | e = )

’ (45)

=41

JmlTr) = J(m ~ 1)1y + 1,,).

In order to evaluate the contribution of interaction
of the diffusion wakes and boundary layers of the
particles into mass transfer between the chain and the
fluid, consider first the solution of the problem (45)
under the condition of complete substance absorption
on the surfaces of spheres.

Taking into account that f(0)=0, we obtain the
following expression for the local diffusion flux to the
surface of the mth sphere

= 13T 13,
T={(m= 1)1y + 1,,(0,)

ImlT)
(46)

Expressions for the total diffusion flux I, to the mth
particle and the sum of fluxes /%™ to the first m particles
of the chain are as follows [10, 11]

Ly =20 | jpl0,)sin0,,d0,, = 18" — 1¥" . (47)
J o
1 m 2:3
1@ = dme 134 3r(}){ Z r?] _ 1(,ml _;‘
A ]

Iy = (3n)° *[2:0(1:3)] 7 1

It should be noted that the diffusion flux to the
second particle is only 0.63 of the flux to the first
particle. This is indicative of the important effect of
diffusion interaction between the reacting particles.

10. QUALITATIVE ANALYSIS OF MASS TRANSFER
OF THE CHAIN OF SPHERES

Solution of equation (45) for the periodic function
#(1) at an arbitrary reaction law f calls for a further
numerical analysis. Here, we shall confine ourselves to
the qualitative analysis of mass transfer of a chain of
spheres.

If we consider a body consisting of spheres located
closely one after the other on a common axis passing
through their centers and if we assume that the fluid
velocity field near the body surface is locally periodic
with period 2 and is governed, in the vicinity of each
sphere, by the principal term of expansion in r—1 of
the stream function of the Stokes flow around a single
sphere (2), then the equation for the local diffusion flux
(written down in the approximation of the diffusion
boundary layer) will coincide exactly with equation
(45). By using this analogy with a single body, we, in
order to approximately determine the total diffusion
flux to an arbitrary chain of spheres, shall avail
ourselves of equation (40) which, as has been already
shown, yields rather good results for a single particle.

In the present case Sh (Shy) is the mean Sherwood

A. D, PoryaNiy and YU, A, SERGEEY

number for the whole chain of particles, § 1s the total
surface of particles. Taking into account that for the
chain composed of m spheres the {following equalities
are valid: S,, = dmm, Shy,, = I S, I = Igm?
{see equation (47)), we obtain from equation (40) the
following formulae for the diffusion fluxes

I = Lya(m), I, = [,[alm) ~ alm ~ 1)}, (48}

olm) = [1 — qlmjjm* .

where g=g(m) is the root of
Arls Ykm' =0 (11).

For the linear kinetics f{x)=: v we have

equation Hiq.

a{m) = dnkm{l, + dnkm' ¥y 1 {49}

[t is seen from equations (4R) and (49) that in-
teraction of the diffusion wakes and the boundary
layers of the chain particles can lead to a noticeable
decrease in the mean mass transfer rate of the system.
Then the following relations hold:

!1\}17 %?1

2 m>

Hm [, =0 (k =0, Pe ' > 0),
Atk — . (Pe,m=const.)equations (48) pass over into
equation (47), while at Pe- - (k. m = const.},
1,,—4nk, which corresponds to the kinetic conditions
of absorption on the spheres.

As it follows from equations (48), at m— 7 the
following asymptotic expressions hold
; 2
I Iom?3 1, = 2Iﬂm Ym0 (50}

Comparison of these expressions with equations
(47) shows that far from the beginning of the chain
{m>1) mass exchange of the particle with the sur-
rounding fluid is close to the limiting conditions of
complete absorption on its surface {provided there is
complete absorption on the preceding particles). This
means that at 1 «/« Pe! ? far particles in the chain are
less “sensitive™ to the reaction kinetics f. This situation
is quite similar to the case of convective diffusion 1o a
flat plate in which the principal term of the asymptotic
expansion for the local flux j far from the beginning of
the plate is independent of the velocity constant & and
coincides with the respective expression for the limit-
ing local diffusion flux in the case of complete absorp-
ton k = + [2]

The limiting equations (50) can be also obtained
directly from the analysis of equation (45). By assum-
ing that at m— -, j,,—0 and for this reason, neglecting
the LHS of equation (45), we, with regard for f(0)=0,
arrive at equation {46) from which equations (47) do
follow.

From a physical point of view this phenomenon can
be explained as follows. The region of the diffusion
wake behind the first particle W, which forms the
initial (incidence) condition for the diffusion boundary
layer of the second particle is strongly depleted due to
reaction on its surface. Therefore, concentration at the
stream lines in the vicinity of the second sphere surface
which arrives from the region of the diffusion wake W,
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will be lower than respective concentration in the
vicinity of the first sphere. Thus, reaction in the
neighbourhood of the forward stagnation point of the
second sphere proceeds under the conditions close to
the mode of complete absorption. It is directly seen
from equation (45) since by virtue of the properties of
the function 5(t) the following equalities should hold:
J2(8,=m)=0, c;(0,=r)=0. More accurate estimates
can be obtained if it is remembered that the con-
centration in the region W2 is of the order of \/g (24)
(recall that the concentration distribution in the inner
region of the diffusion wake W2’ was not allowed for in
the derivation of equation (45)), therefore, c,(n)

~ \/; « L

The diffusion wake behind the second sphere, W,, is
even more depleted as compared with the diffusion
wake W, of the first sphere and leads to a further
decrease of concentration in the region of the diffusion
boundary layer of the third sphere. In this case, an
increase of the surface area is observed in the vicinity of
the forward and rear stagnation points. The surface
area operates in a nearly diffusion mode as compared
with the preceding spheres. At a distance from the
beginning of the chain (m>> 1) depletion of the solution
will finally lead to a drop in the rate of convective
substance supply down to the values which are small as
compared with the reaction rate and it will limit the
rate of the whole process. This, in turn, will lead to the
equality

s
m- oo, Max™ C,, =0,

ie. to the condition of complete absorption.

It should be noted that although the above analysis
is a purely qualitative one, in all likelihood, equations
(48) and (49) can be used for rough quantitative
estimations at small m. It is, therefore, of interest to
compare approximate equations (48) with the results
of numerical integration of equation (45).

11. SOME GENERALIZATIONS

In the general case of a three-dimensional flow
around particles (or drops) of an arbitrary shape it is
possible to show that when the analog of the stream
function ¥ near the body surface is presented in the
form

Y=o y) (€-0),

where &, u, y is a special system of coordinates fixed
with respect to the body surface £ =0 and the stream
lines [11], the integral equation for the local diffusion

flux and the surface concentration are of the form (g,,
=1)

J() = kf (1 — G, * ),
C(t) = 1 — keG, x£(C),

(51)
(52)

vl-Zv t _ .
G‘, * W = T‘(T—T) J‘OW(A)YI 1(}.)([ - j.) ldl,

1 u
=t ) = f o) /aole) d |,
"0
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p=12,... (53)
v=(n+1)"e=Pe T gy = (9:9,955)c =0

Here, n=1 for liquid particles and n=2 for solid
particles. The function #(t) is prescribed parametrically
from the expression

() = |e(w|"" 54
with the aid of equation (53); y, are the critical points
(lines) of incidence on the body surface ¢(u,)=0in the
vicinity of which the normal velocity of liquid is
directed toward the body surface; equation (51) is
valid up to singular points (lines) of outflow which are
closest to u, (in the neighbourhood of which the
normal velocity of fluid is directed away from the
surface). The coordinate x is omitted throughout since
equations (51)-(54) depend on it only parametrically.

It follows from equations (51)-(54) that in the
general case the surface concentration and the local
diffusion flux at singular points or lines of incidence y,
(p = 1,2,...)is determined by equations (11), (33) at @
=k(1—q)j~! (o0, p), where j(o0, p) is the local flux at
the points y, for limiting absorption.

For the axisymmetric and two-dimensional prob-
lems 9/0y = 0 and the system of coordinates ¢ and u
coincides with the orthogonal coordinate system usu-
ally used in the boundary layer theory and fixed with
respect to the body surface.

In the case of a flat plate of length L (Pe=LUD ™ !)in
alongitudinal laminar (boundary layer) flow, when the
coordinate £ is running across, and p along, the plate
we have

n=2,/90=1n(t) =y y=const. (55)

It is seen from equations (51) and (55) that at the
forward stagnation point of the plate the following
limiting equalities hold

x=0,Co1,jok (k<)

The latter means that in this case the conditions for
the incident flux to be nondepleted at the forward
stagnation point do hold.
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DIFFUSION CONVECTIVE POUR UNE PARTICULE EN REACTION DANS UN
FLUIDE CINETIQUE NON LINEAIRE DE REACTION EN SURFACE

Résumé—La diffusion convective pour une particule sphérique dans un écoulement de Stokes, a grand
nombre de Peclet, est étudié dans le cas d’une réaction chimique sur la surface de la particule avec une vitesse
dépendant arbitrairement de la concentration. Des équations intégrales pour la diffusion locale et la
concentration a la surface sont obtenues et une méthode numérique de résolution est développée par
utilisation d’asymptotiques appropriées au voisinage du point d’arrét. L'effet de la vitesse de réaction
constante et de la cinétique de réaction sur le flux totai de diffusion a la surface de la-particule est étudié. Une
formule approchée simple est suggérée pour déterminer le nombre de Sherwood moyen avec une précision
convenable.

On considére une chaine de particules et 'équation intégrale correspondante est obtenue pour le flux local
de diffusion sur leur surface. On analyse qualitativement le transfert massique pour la chaine de sphéres et on
montre que l'intéraction des ondes de diffusion et des couches limites des particules dans ce type de systéme
conduit a une diminution sensible du transfert massique. Des expressions approchées sont obtenues pour les
flux globaux sur les particules en chaine. La méthode proposee est étendue a un écoulement tridimensionnel

arbitraire autour de particules (ou gouttes) de forme arbitraire.

KONVEKTIVE DIFFUSION AN EINEM CHEMISCH REAGIERENDEN TEILCHEN
IN EINEM FLUID: NICKTLINEARE REAKIONSKINETIK AN DER
OBERFLACHEF

Zusammenfassung - - Dieser Bericht beschiftigt sich mit konvektiver Diffusion an einem runden Teilchen in
einer gleichmaBigen, schleichenden Stromung bei hohen Peclet-Zahlen, wobei eine chemische Reaktion an
der Teilchenoberflache stattfindet, deren Geschwindigkeit endlich ist und willkiirlich von der K onzentration
abhédngt. Es werden Integralgleichungen fiir den ortlichen Diffusionsstrom und die Konzentration an der
Oberfldche aufgestellt und eine numerische Methode, welche auf der Verwendung geeigneter Asymptoten in
der Umgebung des vorderen Staupunktes basiert, zu ihrer Ldsung entwickelt. Der EinfluB der Reaktionsge-
schwindigkeits- Konstanten und der Reaktionskinetik auf den gesamten Diffusionsstrom zur Teilchenober-
fliche wird untersucht. Eine einfache Néiherungsgleichung wird vorgeschlagen, die die Bestimmung der
mittleren Sherwood-Zahl mit hinreichender Genauigkeit ermoglicht. Eine Reihe reagierender Teilchen wird
betrachtet und eine entsprechende Integralgleichung fiir den &rtlichen Diffusionsstrom an ihrer Oberfliche
aufgestellt. Eine qualitative Analyse des Stoffiibergangs wird durchgeflihrt und gezeigt, dall die Wechselwir-
kung zwischen der Diffusionsnachlauf-Strdmung und den Grenzschichten der Teilchen bei dieser
Systemanordnung einen substantietlen Riickgang der Stoffiibergangsgeschwindigkeit bewirkt. Ndherun-
gsausdriicke fiir die integralen Strome zu den Teilchen der Reihe werden aufgestellt. Die vorgeschlagene
Methode wird auf eine beliebige dreidimensionale Stromung um Teilchen oder Tropfen mit beliebiger
Oberfliche ausgedehnt.

KOHBEKTUBHAS JIUdG®Y3IUSL K PEATUPVIOUIEA HYACTHUE B XMAKOCTH.
HEJUHEAHASL KUHETUKA MOBEPXHOCTHON PEAKLIMH

AHnoTaums - PaccMmaTpusaercs KOHBEKTHBHAs AHDQY3Ms x cdepHueckod HacTHie B OIHOPOIAHOM
CTOKCOBOM MOTOKe npu Oosbiuux uucnax [lexne B cilydae, KOrga Ha €€ NOBEPXHOCTH 1poTeKaer
XMMH4ECKas PeakllHs, CKOPOCTb KOTOPOH KOHEYHa H fPOH3BOJIBHEIM 00pa3oM 3aBHCHT OT KOHUEH-
tpauud. [loay4eHbl MHTErpajbHbie yPAaBHEHHA JUIH JIOKaJbHOTO AM(PGY3HOHHOrO [1OTOKA M MOBEPX-
HOCTHOM KOHLEHTpAlMM M pa3paboTaH 4MCICHHBIH METON MX PEUIEHHs, HCIO/b3YIOWUMHA COOTBET-
CTBYIOLIHE ACMMNTOTHKH B OKPECTHOCTH MepeaHed KpHTHYeckoH ToukH. Mccnenyercs 3aBHCHMOCTb
NoJIHOro AudPy3HOHHOrO NMOTOKA HA NOBEPXHOCTbL HYaCTHLbI OT KOHCTAHTBI CKOPOCTH H KHHETHKH
peakiMy; NpHBENeHAa NPOCTas NPHEITHXEeHHas (OPMyNa. TNMO3BOMAIOWAS C 1OCTATOYHO BHICOKOH
TOYHOCTLIO ONpeAesATh cpeanee yucao Hlepsyna.

PaccMOTpeHa WHeNOYKa pEarHMpyroLIdX HacTHIl M 1OMAY4eHO COOTBETCTBYIOLIEC WHTErpaibHOE
ypaBHEHHE [UTA JIOKAJIbHOro AMMQY3HOHHOTO NOTOKA Ha HX NOBEPXHOCTH. [1pOBeNeH KadeCTBEHHBIH
aHAM3 MAaccoOOMEHa IeNnouKH cep W MOKAIAHO, YTO B3aMMoneHcTBHE NUB(DY3IHOHHBIX CNEAOB H
MOrpaHC/iOEB YACTHIL B YNOPAMOYEHHBIX CHCTEMAX TAKOro pOA2 NMPHUBOIHT K CYWECTBEHHOMy TOP-
MOXEHHIO HMHTEHCHMBHOCTH Tiponecca MaccoobMena. TlonyueHbl npuOnuXeHHble BBIPAXKCHHA 14
HHTErpaJibHbIX TOTOKOB Ha YaCTHLbl LUENOYKH.

Mpetoxennbiit MeTon o6o6iaeTcs Ha Clyuail TPOH3BOJLHCIO TPEXMEPHOIO OOTEKAHUA 4acTHIL
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